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Abstract

Minimum energy e�ciency standards have occupied a central role in U.S. energy policy for
more than three decades, but little is known about their welfare e�ects. In this paper, we employ a
revealed preference approach to quantify the impact of past revisions in energy e�ciency standards
on product quality. The micro-foundation of our approach is a discrete choice model that allows us
to compute a price-adjusted index of vertical quality. Focusing on the appliance market, we show
that several standard revisions during the period 2001-2011 have led to an increase in quality. We
also show that these standards have had a modest e�ect on prices, and in some cases they even led
to decreases in prices. For revision events where overall quality increases and prices decrease, the
consumer welfare e�ect of tightening the standards is unambiguously positive. Finally, we show
that after controlling for the e�ect of improvement in energy e�ciency, standards have induced
an expansion of quality in the non-energy dimension. We discuss how imperfect competition can
rationalize these results.
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1. Introduction

Minimum energy e�ciency standards have occupied a central role in U.S. energy policy for more
than three decades. They were first introduced as a response to the 1970s energy crisis. At that
time, the economic rationale (Hausman and Joskow 1982) was that energy prices paid by consumers
were well below marginal costs as well as the apparent fact that consumers overdiscount future
energy costs (Hausman 1979). More than 30 years later, minimum energy e�ciency standards are
more popular among policy-makers than ever. The Obama administration has relied heavily on
standard-based policies in the president’s Climate Action Plan. As a result, the depth and breadth
of the coverage of these policies in the markets of energy intensive durables have substantially
increased and will continue to do so in the next few years.1

Despite their prominence, little is known about the welfare e�ects of current energy e�ciency
standards, especially outside the passenger vehicle market, and there rationales are still debated
(Parry, Evans, and Oates 2014). Standard rulemaking analyses provide ex ante estimates of the
costs and benefits of new and revised standards to demonstrate that they are “economically jus-
tified,” but there have been few ex post analyses investigating how existing standards for energy
intensive durables have actually performed.2

The goal of this paper is to show how standards have impacted overall quality in the appliance
market. We employ a revealed preference approach that allows us to compute a price-adjusted
quality index. This quality index, together with information on prices, is su�cient to determine
the consumer welfare e�ect of past standards. Our empirical analysis focuses on six appliance

1New minimum standards are established and revisions of existing standards are set into law a few years
before they become e�ective. The Department of Energy (DOE) under the current Obama administration
has enacted numerous standards that will become e�ective after 2016.

2Dale, Antinori, McNeil, McMahon, and Fujita (2009) retrospectively looked at price trends in the appli-
ance market and found that following the revisions in minimum standards, realized prices were much lower
than the prices anticipated in the rulemaking analyses. Spurlock (2014) showed that appliance standards led
to a decrease in appliance prices at the time the revisions became e�ective. Allcott and Taubinsky (2013)
used a choice experiment to investigate whether a ban on incandescent lightbulbs, similar to one recently
implemented in California, was justified, and concluded that it was most likely not. Brucal and Roberts
(2015) is a study complementary to ours that uses the same data. They also look at the evolution of price
and quality for one of the six appliance categories that we consider: the U.S. clothes washer market. They
develop a quality index using a di�erent methodology and find results similar to ours.
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categories3 during the the 2001-2011 period, which were subject to frequent revisions in two types
of energy e�ciency standards: minimum and ENERGY STAR (ES) standards. Minimum standards
mandate maximum energy use for all products manufactured in a given year and the ES program
is a voluntary certification that complements minimum standards by identifying the most energy
e�cient products in the marketplace. By exploiting variation in both minimum and ES standards,
we are able to show how products located at di�erent ends of the energy e�ciency spectrum respond
to standards.

We find that during the period 2001-2011, the price-adjusted quality indexes of six di�erent ap-
pliance categories either increased or remained constant. We also observe several discrete increases
in quality that coincide with the e�ective date of new or revised standards—-newly introduced
appliance models that met the more stringent standards were then of higher quality, on average,
relative to existing models on the market. We propose four estimators to quantify the change in
quality and price of appliance models that were marginal to the standards. All four estimators
exploit the fact that manufacturers are strategic in the timing of their product line decisions and
compare appliance models that exited the market at the time of a standard revision to models that
entered the market during this same period. We argue and show evidence that these models identify
the marginal e�ect of a standard revision. We present two estimators that control for unobserved
temporal shocks by using variation in the timing of standard revisions across appliance categories.
Finally, we also implement a matching estimator that distinguishes the change in quality due to
incremental improvement of existing product lines versus the introduction of new product lines
subject to major redesign. The results suggest that most standard revisions in our sample led to
an increase in overall quality. We, however, find a modest impact on price; some revision events
led to a decrease in prices, but most price changes are not statistically significant. We also find
that the change in quality is due to both the introduction of new product lines and improvement
within product lines.

The micro-foundation of our quality index is a discrete choice model for di�erentiated products.
Our econometric procedure is inspired by hedonic models used in industrial organization (Ackerberg
and Rysman 2005; Bajari and Benkard 2005; Berry and Pakes 2007; Song 2007). Our main estimator
consists of a nested logit that explicitly accounts for the e�ect of unobserved horizontal product
di�erentiation with the addition of a function in the alternative-specific utility that counts the

3In the main analysis, we present results for clothes washers, dishwashers, refrigerators (both full sized
and compact), freezers, and room air conditioners without reverse cycle. In the online Appendix, we present
additional results for room air conditioners with reverse cycle.
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number of products and provides a measure of distance between products, as proposed by Ackerberg
and Rysman (2005). We estimate the model using monthly national market shares disaggregated
at the product level. These data are not suited to identify rich heterogeneity patterns in consumer
preferences as is typically done in demand estimation for di�erentiated products (Berry, Levinsohn,
and Pakes 1995, 2004). We focus on identifying a measure of vertical quality that captures how
each product is valued in equilibrium on the market. Our approach and data are similar in nature
to what has been used in the trade literature (Hallak and Schott 2011; Feenstra and Romalis 2014).
One important di�erence from this literature is that our fine level disaggregation at the product
level allows us to side-step aggregation issues in the estimation and construction of indexes.

We show that our results are robust to our modeling assumptions through extensive sensitive
tests. For instance, instead of estimating the coe�cient on price, we calibrate it and perform
sensitivity tests that cover a wide range of economically plausible values for this parameter. For
any value of this parameter, the results are qualitatively the same—several standard revisions are
associated with a large increase in price-adjusted quality.

The micro-foundation of our approach has several advantages. The quality index has a precise
economic interpretation, which is simply the so-called mean utility term in the model of Berry,
Levinsohn, and Pakes (1995, 2004). Our quality index can then be decomposed to identify which
product characteristics contribute to the overall change in quality. In the present application, we
are particularly interested in determining whether changes in overall quality are driven primarily by
energy use and how standard revisions have a�ected quality in the non-energy dimension. Previous
work has suggested that prices of appliance models that remained in the market across standard
changes dropped, while average prices remained unchanged (Spurlock 2014). The concern is that
manufacturers might have been trading o� quality of the products against improvements in energy
use, in order to maintain their price points. If this were the case, then we might expect to see
quality in the non-energy dimension to diminish. The opposite is also possible. Several theoretical
papers (e.g., Ronnen 1991; Crampes and Hollander 1995) investigating quality standards in im-
perfectly competitive markets have shown that standards could simultaneously induce lower prices
and improve quality beyond the required minimum. The intuition behind these results is that
standards reduce product di�erentiation in the regulated dimension of the product space, which
increases competition among products and incentivizes firms to further di�erentiate by expanding
quality. Despite the extensive theoretical literature on quality standards and market structure,
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very little empirical work has been done to test this hypothesis.4 We then propose two approaches
to test how energy e�ciency standards impact quality in the non-energy dimension.

We first propose a lower bound on an energy e�ciency-price-adjusted quality index. This index
is a conservative estimate of quality in the non-energy dimension that we compute by making a
generous adjustment to how consumers value future energy costs. Using this index, we find evi-
dence that quality in the non-energy dimension also increased following the revision of standards.
In a second approach, we directly estimate how consumers value future energy costs. We focus
on one appliance category (clothes washers) as a case study and use rich and detailed data on
product characteristics collected from product users’ manuals. Given the extensive list of product
characteristics that we observe, not all which may be valued by consumers, our challenge is to deal
with a sparse demand model. Similarly to Gillen, Shum, and Moon (2014), we propose a LASSO
regression to select and measure how product characteristics correlated with the price-adjusted
quality index. Using this procedure, we find that the coe�cient on energy use is negative and sta-
tistically significant, but the estimate suggests a considerable undervaluation of future energy costs
by consumers. We also find that clothes washers’ overall capacity is highly valued by consumers.
We show that the number of features o�ered by clothes washer manufacturers have drastically in-
creased during the sample period and manufacturers have relied more on trademarked technologies
over time. More importantly, we observe discrete changes in the rate of increase in the number
of features and trademarks that coincide with the e�ective date of some standard revisions. The
LASSO regression selects several of these characteristics and from the characteristics selected about
half are statistically significant. This suggests that from the large and increasing number of fea-
tures o�ered during this period, several were valued by consumers. However, once we account for
improvement in energy use and overall capacity through time, the remaining component of quality
of clothes washers is no more increasing, but decreasing over the sample period. In sum, lower
energy use and larger size clothes washers appear to be the main drivers in the improvement in
overall quality, not the featurization and trademarking of the products.

Our conclusions have important implications for the design of energy e�ciency standards. The
current paradigm is that standards lead to overall improvement in energy e�ciency, but induce

4Examples we could find were on quality regulation or licensing for certain service industries (e.g., child
care centers: Gormley 1991; Chipty and Witte 1997; professional services: Carroll and Gaston 1981, 1983;
and drug introductions following FDA regulation: Wiggins 1981).
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higher prices, reduce product diversity (Hausman and Joskow 1982), and may lower quality in
other dimensions.5 In several instances, we find exactly the opposite.

The remainder of this paper is organized as follows. In the next section, we give an overview
of the policy background related to appliance standards. In Section 3, we discuss the related
literature and predictions from theoretical papers. In Section 4, we present our approach used to
construct a quality index. In Section 5, we discuss our data and estimation strategy. In Section 6,
we present the results for the overall evolution of quality in the appliance market and regression
results quantifying the change in quality and price. In Section 7, we present two approaches to
investigating the evolution of quality in the non-energy dimension. We conclude in Section 8.

2. Policy Background

U.S. federal energy e�ciency regulation of energy consuming household appliances started with the
1975 Energy Policy and Conservation Act (EPCA). EPCA introduced test procedures, labeling, and
energy e�ciency standards related to energy use. The testing component required manufacturers
to provide test results of all their marketed products, and the labeling component became the
EnergyGuide program managed by the Federal Trade Commission. The Department of Energy
was eventually tasked with implementing the minimum energy e�ciency standards program.

EPCA was amended by the National Energy Conservation Policy Act (NECPA) of 1978. NECPA
introduced the list of products initially covered by standards and provided more detail on the
rulemaking process.

The first U.S. federal minimum e�ciency standards were actually established under the National
Appliance Energy Conservation Act (NAECA) of 1987. Among the a�ected products were clothes
washers (e�ective January 1, 1988), dishwashers (e�ective January 1, 1988), room air conditioners
(e�ective January 1, 1990), and refrigerators and freezers (e�ective January 1, 1990). These stan-
dards were primarily performance-based, though di�ering by product classes defined by technical
characteristics in some cases, and focused on establishing a maximum energy use metric. However,
for a small subset of products the standards were also technology-based, requiring certain features

5Manufacturers have often argued against some standard revisions on the basis that the new standard will
force some technologies out of the market and reduce performance (AHAM 2015). It is explicitly written
into law that the Department of Energy is not allowed to enact a new standard if it has the knowledge that
the standard will reduce product availability and/or performance.
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or options to be made available (e.g., a dry without heat option for dishwashers, and a cold water
rinse option for clothes washers).

Beyond the initial round of NAECA standards, there was a requirement that each product go
through two subsequent rulemakings to update the standards further if it was determined that the
new standard level was technically feasible and economically justified. The1992 Energy Policy Act
(the “1992 EPAct”), the 2005 Energy Policy Act (the “2005 EPAct”), and the Energy Independence
and Security Act (EISA) of 2007 all a�ected the procedures and timelines of revised standards for
appliance products. Recently introduced standards and revised standards established by NAECA
were almost exclusively performance-based.

The process by which individual standards are set is a multi-year process. It takes three to five
years from the initial steps, which consist of conducting a market and technology assessment (to
determine if the standard for a given product will be revised), to the adoption of the final rule.6 In
addition, a new standard is generally not e�ective in the market for three years following the date
when it is adopted by DOE. Finally, the timing of when di�erent products are reviewed is generally
set many years prior by overarching legislation, and the specific new rules are set multiple years
prior to when they become e�ective.

In addition to the minimum e�ciency regulation, appliances have also been subject to non-
regulatory energy e�ciency policy, the most prominent of which is the ENERGY STAR (ES)
labeling program, a voluntary certification standard for energy intensive durables. In particular,
the “1992 EPAct”, further amended by the “2005 EPAct”, established the ES program, which is
administered jointly by the EPA and DOE. This program identifies and labels products with a
high level of energy e�ciency. The ES certification requirement is generally defined relative to
the minimum standard level e�ective at any given point in time, though it can be updated more
frequently. In particular, the 2005 EPAct specified that the ES criteria should be regularly updated,
and in 2009 the EPA and DOE established that, other than in cases with appliances that had very
long product life cycles, the ES criteria would be reviewed every three years, or more frequently if
the market share of qualifying products exceeded 35 percent.

Our analysis focuses on six appliance categories: clothes washers, dishwashers, room air condi-
tioners, freezers, compact refrigerators, and full-size refrigerators. Table 1 summarizes the history
of the minimum e�ciency standards and the ES certification requirements for these products. Each

6The time between Final Rule and compliance varies from product to product and it is determined by the
legislation.
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entry corresponds to the e�ective date that these regulations first came into e�ect or were revised.
Our data cover the period 2001-2011, which was particularly active for both minimum and ES
standards. Additional details about the standards for these appliance categories can be found in
Appendix A. Not shown here is the depth and breadth of the coverage of these standards for the
whole market of energy intensive durables. As of today, minimum standards cover more than 60
product categories. The DOE is still planning to expand this coverage and numerous revisions in
existing standards are planned for the upcoming years. Similarly, for the ES program, which covers
more than 70 product categories, further expansions and revisions are planned for the near future.

3. Related Literature

Performance-based minimum e�ciency standards for appliances are instances of a combination
of performance-based and attribute-based regulation (Ito and Sallee 2014), where the maximum
amount of energy a given product can use is a function of a small set of product characteristics.
Most appliance standards are set as a function of size or overall capacity such that larger appliances
are allowed to use more energy. Other features such as the design of the appliance, for instance
bottom-freezer versus top-freezer refrigerators, are also considered. The DOE’s rationale in using
attribute-based standards seems to ensure that the regulation does not restrict the choice set or
distort the quality in the non-energy dimension. As shown by Ito and Sallee (2014), there is a formal
e�ciency argument to justify attribute-based standards. In the absence of a compliance trading
mechanism, as in it is the case of appliance standards, attribute-based standards may improve
e�ciency by harmonizing compliance costs across products.

In practice, attribute-based standards are, however, likely to distort product quality. If the
regulator has imperfect knowledge of manufacturers’ costs, he will not be able to set optimal
standards. As a result, standards will implicitly reward or penalize firms for providing certain
attributes and will induce trade-o�s between energy use and other attributes. Such trade-o�s
have been extensively documented in the passenger vehicle market (e.g., Knittel 2011; Klier and
Linn 2012; Whitefoot, Fowlie, and Skerlos 2011). In the presence of imperfect information on
the regulator side, they will invariably be synonym with an e�ciency loss relative to the perfect
information case.

Setting standards in the presence of a second market failure, imperfect competition, will also
induce distortion in quality. The theoretical work looking at the interplay among market structure,
quality provision, and minimum quality standard (MQS) is extensive and makes numerous, but
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sometimes contradictory predictions. As we discuss below, one robust prediction made by several
models suggests that setting an MQS in the presence of imperfect competition may actually increase
quality beyond the MQS and improve welfare relative to the unregulated case.

Spence (1975) was the first to provide the insight that market structure has important impli-
cations for the provision of product quality. He showed that a monopolist will provide a level of
product quality that deviates from the social optimum due to the di�erence between the marginal
versus the average consumer. The classic work of Mussa and Rosen (1978) extended this framework
and considered heterogeneous preferences over a vertical quality attribute. They showed that the
monopolist will underprovide quality to the consumers with a lower willingness-to-pay for quality,
and charge increasingly higher margins for quality above the lowest provided. Besanko, Donnen-
feld, and White (1988) then demonstrated the implications of an MQS (along with other regulatory
mechanisms) on a monopoly market as initially described by Mussa and Rosen (1978) and showed
that an MQS imposed in such a market would raise quality for the lowest consumer types, while
leaving the e�ect on the quality provided to higher types of consumers unchanged. Leland (1979)
and Shapiro (1983) considered the role of an MQS with a model of perfect competition in an im-
perfect information context. Both demonstrated that sellers in such a setting have an incentive
to lower product quality in order to increase profits. However, Shapiro (1983) showed that, due
to reputation e�ects, sellers also had an incentive to provide some high quality goods, but would
charge a premium for these products. Both showed that an MQS could have positive impacts on
the market including an increase in overall welfare in some cases (Leland 1979), but that some
consumers could end up worse o� as a result of the MQS and the regulation could result in the
elimination of some products from the market that consumers would otherwise want to purchase.

While the monopoly and perfect competition cases are intuitive, the U.S. appliance market is best
described as an oligopoly. A small number of manufacturers have large market shares and mergers
and acquisitions in the last decade have substantially increased market concentration (Ashenfelter,
Hosken, and Weinberg 2013). To illustrate, the Herfindal index for the appliance categories that
we cover vary between 0.18 and 0.516.7

Ronnen (1991) introduced a model of oligopolistic competition (duopoly) to study MQS. In
contrast to Leland (1979) and Shapiro (1983), he showed that in this type of market structure an
MQS will result in higher quality products purchased by all consumers, and higher surplus to all

7In our data, the Herfindahl-Herschman indexes are the following: clothes washers 0.188, dishwashers
0.182, room air conditioners 0.277, refrigerators (compact and full-size) 0.177, and freezers 0.516.
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consumers. The idea is that as the MQS causes the disparity in product quality di�erentiation
to shrink, products become closer substitutes to each other, which causes prices to fall. High
quality sellers raise the quality of the products they provide in order to alleviate this increased
price competition. However, the range of quality in the market is still restricted by the MQS,
which means that prices are still lower than in the unregulated case. This higher quality across the
range of products, along with lower hedonic prices, means that consumers end up better o� after
the regulation.

Following Ronnen (1991) there is a rich literature, some of which we describe below, exploring the
implication of an MQS with variations on the same basic model framework used by Ronnen (1991),
which consists of a market characterized by the following: (i) a duopoly with a high quality seller
and a low quality seller, (ii) generally identical single-product firms that compete in a two stage
game in which qualities are chosen first and prices are chosen in the second stage with a solution
being a subgame perfect Nash equilibrium, (iii) products that are di�erentiated both vertically (on
some “quality” dimension), and horizontally using a variant on a Hotelling spatial style model, and
(iv) usually the assumption that the market has full coverage (i.e., all consumers are catered to in
the market).

One fundamental di�erentiating factor across variations of this model comes from assumptions
regarding the cost structure for quality provision. Ronnen (1991) assumes quality-dependent fixed
costs. Many other researchers have looked at implications of an MQS under di�erent extensions of
the basic model with this fixed cost assumption, including variations in timing of the quality com-
petition phase (Constantatos and Perrakis 1998); more than two firms (Scarpa 1998; Pezzino 2010);
Cournot quantity competition rather than Bertrand price competition (Valletti 2000; Pezzino 2010;
Toshimitsu and Jinji 2007); and asymmetric costs across firms and endogenous quality ordering
(Jinji and Toshimitsu 2004; Baliamoune-Lutz and Lutz 2010). Others have presented models with
variable costs increasing with product quality. In particular, Crampes and Hollander (1995) as-
sume variable costs of quality and show results consistent with Ronnen (1991). Others have further
expanded the model with the variable cost of quality assumption to explore di�erent settings, in-
cluding endogenously set standards and the implications of an MQS on the capacity of firms to
collude (Ecchia and Lambertini 1997); and asymmetric dominance across firms and the implication
of an MQS on the distribution of market power (Ecchia and Lambertini 2001). Among all of the
above work, the implications for an MQS have largely been consistent with the findings of Ronnen
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(1991) and Crampes and Hollander (1995): an MQS results in increased quality and/or increased
social welfare.8

Beyond minimum standard, the role of product labeling is also relevant to our setting, as appli-
ances are subject to the ENERGY STAR (ES) label. The work that has explored the implications of
product labeling has largely focused on variations of the model assuming some degree of uninformed
consumers. Baltzer (2012) explores both an MQS and labels in a setting with asymmetric infor-
mation and finds that labels are not necessarily the optimal policy when markets are imperfectly
competitive. He finds that an MQS, when consumers are completely uninformed about product
quality, results in higher welfare gains than a label. Buehler and Schuett (2014) also show that an
MQS in a setting where a fraction of consumers observe quality results in higher quality and higher
social welfare. This result, as in the case of Ronnen (1991) and Crampes and Hollander (1995),
stems from the reduced product di�erentiation and resulting increased price competition. They
show, on the other hand, that a labeling or certification program instead can result in firms having
a tool to even further di�erentiate their products and can therefore increase profits. Only in the
case when the share of informed consumers is very small is a certification program possibly more
optimal relative to an MQS. While others have shown that labeling can be used to induce firms
to increase quality that is depressed below the social optimum (Amacher, Koskela, and Ollikainen
2004), others show that with imperfect competition, information provision alone can actually cause
welfare to fall if it induces too much product di�erentiation (Brouhle and Khanna 2007). Houde

8The only variations of the model in which the results are completely the opposite are the cases when the
model is expanded to more than two firms, or the assumption is made that firms operate under Cournot
competition rather than Bertrand competition. However, the results in various combinations of these two
assumptions appear somewhat inconsistent. For instance, Scarpa (1998) showed that with three firms com-
peting over prices, the introduction of an MQS decreases the maximum quality level provided and average
quality consumed, and despite increases in consumer surplus, MQS can reduce overall welfare. However, he
acknowledges that his results hinge largely on assuming no variable cost of quality, and he suggests that
introducing these variable costs may change the main results. Pezzino (2010) showed that when there are
three firms under Cournot competition, however, imposing an MQS has a positive e�ect on the average level
of quality provided while Valletti (2000) shows that when two firms compete in a Cournot game, then an
MQS unambiguously decreases welfare, although they do show that in aggregate consumers in each quality
segment do benefit from the MQS. Jinji and Toshimitsu (2004) relax some assumptions of the model and
show that the results of Ronnen (1991) in the Bertrand case, and Valletti (2000) in the Cournot case are
largely robust. However, Napel and Oldehaver (2011) show that under Cournot competition, if the dynamic
e�ects of standards impeding collusion are taken into account, then an MQS can result in overall welfare
gains.
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(2014a) showed that for the particular case of the ES certification, the program may be welfare
improving, but most of the welfare gains accrued to firms that use the label to price discriminate.

In sum, the main insight from the theoretical literature is that setting standards in imperfectly
competitive markets increases competition in the regulated dimension of the product space. Firms
then have an incentive to distort quality to further di�erentiate their products and relax competi-
tion. This insight guides the second part of our empirical work in Section 7 where we investigate
whether energy e�ciency standards have an impact on quality beyond improvement in energy use.

4. Measuring Quality: A Revealed Preference Approach

The micro-foundation of our quality index is a discrete choice model in a market with di�erentiated
products. Each consumer i chooses a product that maximizes his utility and values a product j as
follows:

(1) Uij = “j ≠ ÷(yi ≠ pj) + ‘ij

where pj is the price of product j, yi is the income of consumer i, and ÷, the coe�cient on price,
corresponds to the marginal utility of income. The term “j represents an index of quality common
to all consumers and ‘ij represents idiosyncratic preferences, which can be thought of as quality in
the horizontal dimension. Our goal is to estimate “j , a price-adjusted measure of vertical quality.
We face two challenges in this exercise. First, it requires exogenous variations in prices to identify
÷. Second, ‘ij is unobserved. The classic approach to addressing the latter problem is to assume a
distribution for ‘ij , such as the generalized extreme value distribution, which gives rise to the well-
known multinomial logit formula for the choice probabilities. As pointed out by Caplin and Nalebu�
(1991) and later by Berry and Pakes (2007), modeling idiosyncratic preferences with an additive
i.i.d. error term amounts to assuming tastes for products. Ackerberg and Rysman (2005) and Berry
and Pakes (2007) discussed why this assumption is problematic, especially in the presence of large
choice sets where product entry/exit is an important phenomenon. It notably implies that the
dimension of the unobserved product space increases proportionally with the number of products
in the choice set. As a result, choice models that include an i.i.d. additive error term cannot
capture congestion in the product space. This has unintended consequences for the identification
of the model parameters and measurement of welfare. For instance, Ackerberg and Rysman (2005)
demonstrate how this assumption can result in an identification of the coe�cient on price in a logit
model using data with no price variation.
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In the present application, we are concerned about the identification of the product-specific fixed
e�ects “j , which are also a�ected by how we model idiosyncratic preferences. A failure to account
for congestion e�ects in the product space implies that the e�ect of (unobserved) horizontal product
di�erentiation9 will necessarily be captured by the product-specific fixed e�ects. As a result, the
vertical component of quality will tend to be overestimated.

There have been several solutions proposed to this problem. Berry and Pakes (2007) proposed
the pure characteristic model. This approach completely eliminates the horizontal component of
unobserved preferences (i.e., the additive consumer-product-specific error term), and only accounts
for a one-dimensional unobserved vertical product characteristic. The pure characteristic model is
thus the complete opposite of a model with tastes for products. In this model, the expansion of
the choice set will automatically lead to product congestion. This is also a restrictive assumption.
In practice, one could estimate a model with tastes for products and also the pure characteristic
model to bound the estimates and welfare e�ects (see Song 2007). The problem is that the pure
characteristic model is computationally challenging to estimate. The algorithm to compute the
estimator is not guaranteed to converge and for applications with a large number of products it
performs poorly.10

Ackerberg and Rysman (2005) proposed an alternative estimator that can be qualified as a
hybrid solution. Their approach consists of maintaining the assumption of additive i.i.d. error
terms, but also including the number of products directly in the utility function as a way to
control for unobserved horizontal product di�erentiation. They provide various micro-foundations
for such an approach consistent with utility maximization. In practice, their approach can be
implemented as a generalization of a logit-based model, where not all parameters necessarily have
a clear structural interpretation.

For our estimation, we develop an estimator similar in spirit to the approach proposed by
Ackerberg and Rysman (2005). We use a nested logit model with a flexible representation of
the outside option, which, as we show below, is observationally equivalent to adding the number of
products within each nest into the utility function. Moreover, we also include as a control a measure
of distance between products, an approach also proposed by Ackerberg and Rysman (2005). In our

9Ackerberg and Rysman (2005) labeled the assumption of additive i.i.d. error terms the “symmetric
unobserved product di�erentiation” (SUPD) assumption.

10To our knowledge, Song (2007) is the only application that used the pure characteristic model. His
model was computed for only 20 products. In our application, the estimation must be performed with choice
sets that well exceed 500 products. We had little success estimating the model with such large choice sets.
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preferred specification, this distance function consists of an l

2-norm computed using a subset of
observed attributes. The rationale of using such a distance function is to capture horizontal product
di�erentiation using information about the location of the products in the observed characteristic
space, instead of solely relying on the number of products.

Our estimating equation is derived as follows. First, we define the function f(j, J, Xj , ”) that
takes as arguments the number of products J and observed characteristics X. In a nested logit
model, the function could be simply defined as the log of the number of products in each nest
g, i.e., f(j, J, Xj , ”) = ”ln(Jj|g), where ” is an unknown parameter and f(j, J, Xj , ”) enters the
alternative-specific utility (Equation 1) additively. We can include this term and rearrange the
choice probabilities using the Berry (1994) inversion to obtain:

(2) ln(‡j) ≠ ln(‡0) = “j ≠ ÷pj + ‡”ln(Jj|g) + (1 ≠ ‡)ln(‡j|g)

where ‡j and ‡0 are the market share of product j and the outside option, respectively. The term
‡j|g is the market share of nest g to which product j belongs. Note that ‡j|g = Jj|g/J . Therefore,
we can rearrange ‡”ln(Jj|g) + (1 ≠ ‡)ln(‡j|g) and write (1 ≠ ‡ + ‡”)ln(Jj|g) ≠ (1 ≠ ‡)ln(J). We
define the parameter — = 1 ≠ ‡ + ‡” and end up with the expression —ln(Jj|g) ≠ (1 ≠ ‡)ln(J).
With panel data, adding time fixed e�ects allows us to flexibly model the outside option, which
will then capture both ln(‡0) and (1 ≠ ‡)ln(J). Therefore, only — can be identified. As alluded to
above, the nested logit is therefore consistent with a particular model of product congestion. One
well-known limitation of the nested logit is that the nest structure must be predefined based on ad
hoc assumptions. Our strategy in addressing this issue is to use a data-driven approach to define
the nest structure. We perform a k-means clustering analysis (Hastie, Tibshirani, and Friedman
2009) using a subset of important observed attributes that we observe for each appliance category.
This procedure assigns each product to a cluster defined by a notion of distance between products
and the clusters identified correspond to the nest structure of the choice model. Additional details
can be found in Appendix B. In the results section, we also discuss sensitivity analysis on the nest
structure.

Our preferred estimator will consider the more general function f(j, J, Xj , ”) = ”ln(Jj|g)+–Rj|g,
where Rj|g is an l

2-norm that measures the distance across K attributes between product j and all
other products located in nest g to which j belongs:

Rj|g =
ı̂ıÙ

Kÿ

k=1

A
Xjk ≠ Xgk

‡(Xgk)

B2

,
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where Xgk is the average value of attribute k within nest g and ‡(Xgk) is the standard deviation.
We rely on the l

2-norm as a measure of distance because it has a direct link with the k-means
clustering analysis (see Appendix B) that we use to define the nests.11 Formally, our function Rj|g

measures the distance from the center of each cluster identified by the clustering analysis.

5. Data and Estimation Strategy

The primary data used for the estimation are point of sales data provided by the NPD Group, a
market research company. Each observation in the NPD data consists of the monthly total sales
and total revenue for a particular appliance model. The data were collected from a large sample of
retailers12 during the 2001-2011 period and were aggregated at the national level. Each appliance
model is identified by a unique manufacturer model number and is matched with basic attribute
information, which varied depending on the appliance.

The definition of a product in our data is very disaggregated. For some appliance categories (e.g.,
room air conditioners (ACs), dishwashers, and clothes washers), the manufacturer model number
corresponds to the actual product that consumers bought in stores. For other categories (refrig-
erators), a product is usually distinguished up to its color and a few options. In the refrigerator
market, manufacturers commonly o�er product lines with three to five di�erent colors. Detailed
refrigerator features such as ice-maker are observed.

The data were matched with various publicly available data sources to recover energy use and
energy e�ciency ratings. In particular, all appliances were matched to energy use data provided by
the Federal Trade Commission (FTC). The FTC provides yearly model-specific energy consumption
data, which reflect the information provided to consumers on the EnergyGuide label posted on

11Alternatively, Ackerberg and Rysman (2005) propose to define R

j

as follows:

R

j

=
Jÿ

k=1
„

!
(X

j

≠ X

k

) ú (cov

≠1(X)) ú (X
j

≠ X

k

)
"

where „ is the pdf of the standard normal distribution. Ackerberg and Rysman (2005) describe the function
R

j

as a weighted sum of products with similar characteristics, but we find it more intuitive to label it a
distance function. As the di�erence X

j

≠ X

k

gets close to zero, the value of R

j

increases.
12The number of retailers sampled by the NPD Group varies from year to year. NPD provided yearly

estimates of the coverage of the U.S. appliance market; this varies from about 25% to 80% for all appliances
except for room air conditioners, which had a lower market coverage (25% to 38%). In all cases the NPD
data tended to cover less of the market in earlier years of our dataset, and the market coverage increased
steadily over the sample period.
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appliances prior to purchase. In addition, we matched the clothes washer data to energy usage data
provided by the ENERGY STAR program as well as the California Energy Commission (CEC) in
order to obtain data on the energy use metric specific to that used by the Department of Energy
(DOE) in setting minimum e�ciency standards.

In our analysis we take advantage of one additional source of rich data we have compiled for
clothes washers specifically. We complemented the attribute information provided by NPD with
information provided in the manufacturer-provided users’ manuals.13 From these users’ manuals,
we obtained detailed model-specific attribute information. In collecting the data, we were very
careful in identifying the various nomenclature used by manufacturers to describe a technology
and track the incidence of each particular technology over the sample period. We also collected
information about the use of trademarks in describing features. Finally, we consulted with appliance
experts to distinguish energy e�ciency related characteristics from others. We first use this fine-
grained attribute information to validate the NPD attribute data, which we found to be reliable.
More importantly, we use this information to investigate how standards impact di�erent product
features and how the evolution of specific features correlates with overall quality.

5.1. Estimation Strategy

Our data consist of monthly revenue and sales by appliance model. Average monthly price can
then be computed by simply dividing revenue by sales. Although we observe large variations in
the average monthly price for each appliance model, this variation is likely to be correlated with
product-time specific unobservables. Consider the e�ect of inventory and stock-out, for instance.
As a particular appliance model arrives at the end of its product life, retail stores are more likely
to o�er deep discounts to clear inventories, which will lead to stock-outs. We will thus observe
low national sales (due to stock-outs in regional stores) together with low prices, which suggests
an upward sloping demand curve. In sum, the level of aggregation of the data and the presence of
dynamic pricing strategies in the appliance market pose important challenges for the estimation of
the coe�cient on price.

To account for time varying unobservables correlated with a product life cycle, we add product
age as a control variable. We measure age in months starting with the first month where we observe

13We collected the users’ manuals from various online sources and extracted the content from the pdf
documents using help from our valuable research assistants.
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a sale in the panel data. We allow the e�ect of product age to be as flexible as possible by defining
a dummy for each month of age.

For the coe�cient on price, we calibrate the parameter ÷ = ÷ and conduct extensive sensitivity
tests with respect to its value. We fix ÷ so that the long-term price elasticity is approximately equal
to -2.25, which is close to the value that Houde (2014b) found for the U.S. refrigerator market.14

Our decision to calibrate the coe�cient on price was based on pragmatism and transparency. By
ruling out the estimation of ÷, our estimation is computationally simple and easy to replicate.
Through sensitivity tests, we provide bounds on the value of the quality index and show that the
choice of ÷ does have an impact on the results, but not on our main conclusions.15 This modeling
decision is therefore rather inconsequential for the present study.

Our preferred specification is:

(3) ln(‡jat) = “j ≠ ÷pjt + —ln(Jj|g,t) + –Rj|g,t + ‹a + µt + ›jt,

where index a represents product age, which is simply the number of months since product j has
been on the market, and t is a subscript for months of sample. The controls ‹a and µt are therefore
month-of-age and month-of-sample fixed e�ects, respectively. We estimate the above model with
OLS separately for each appliance category. Standard errors are clustered at the appliance model
level.

In Equation 3, the quantities of interest are the product fixed e�ects: “j , which we use to
construct a price-adjusted quality index. Our preferred index consists of a monthly model-weighted
average of the product fixed e�ects:

(4) QIt =
Jÿ

j

Djt“j

where Djt is a dummy variable that takes a value of one if product j is on the market in month t,
and zero otherwise. The index is model-weighted instead of sales-weighted because we want to show
how the quality o�ered by manufacturers responds to standards and exclude demand substitution
e�ects. The time variation in quality displayed by the index will thus come solely from appliance
models exiting and entering the market every month, not from sales.

14We set the value of ÷ to -0.0045 for all appliance categories. For an average price of $500, this corresponds
to an own-price elasticity of approximately -2.25 according to the logit model.

15In interpreting our results, we focus on the sign of the welfare e�ects, not the precise dollar amount.
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Finally, note that we estimate the product fixed e�ects “j for a sub-sample, J , corresponding
to the most popular appliance models in each appliance category. For full-size refrigerators, we
consider the models that are responsible for 80% of the total sales in a given year, which yields
1,183 unique refrigerator models. For the other five appliance categories, we use the models that
are responsible for 90% of the total sales.16 Using this criterion, but the number of models in the
sample for clothes washers, dishwashers, room air conditioners,17 freezers, and compact refrigerators
are: 708, 800, 650, 210 and 265, respectively.

6. Results: The Evolution of Quality in the Appliance Market

Figure 1 shows the evolution of the price-adjusted quality index (Equation 4) computed for the
six appliance categories. The 95% confidence intervals are also shown and obtained via the delta
method using the full covariance matrix of the product fixed e�ects estimated with Equation 3.
The vertical lines identify the e�ective dates of the revised minimum energy e�ciency standards
(MES) and/or ENERGY STAR standards (ES).

Graphically, there are two important stylized facts that emerge. First, some quality indexes dis-
play a strong upward trend and those trends coincide with revisions in minimum and/or ENERGY
STAR standards. Second, for several events, we observe a sharp change in quality exactly at the
time that the new minimum and/or ENERGY STAR standards became e�ective. This suggests
that there was a high rate of product turnover induced by the revised standards and manufactur-
ers were able to coordinate their product line decisions to meet the standards. Figure 2 confirms
this. We observe that the large changes in quality indeed coincide with large reductions in average
product age—as old product lines exit the market and are replaced by new products, the average
age of products present in the market drops.

Figure 1 also shows that apart from the 2007 revision in the ES standard for dishwashers, all
the large discrete changes in quality at the time of revisions consist of an increase. This means that
products that entered the market to meet the more stringent standards were of higher quality, on
average, relative to the previous generations of products.

16We experimented with this criterion, using a lower or higher threshold did not have an important e�ect
on the results.

17We distinguish between air conditioners with and without reverse cycle technology. In our main analysis,
we present only results for air conditioners without reverse cycle. Additional results for models with reverse
cycle can be found in Appendix E.
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6.1. Sensitivity Tests

The above results are robust to various specifications and modeling assumptions. In this section,
we only present results for clothes washers. Sensitivity tests for the other five appliance categories
yield similar conclusions and can be found in Appendix C. Panel A of Figure 3 shows the impact of
changing the value of the coe�cient on price. To bound our estimates of quality, we re-estimated
Equation 3 using a value of ÷ that corresponds to an own-price elasticity close to zero (-0.25) and
a value of ÷ that corresponds to a much higher elasticity (-3.75). In our preferred specification,
we set ÷ such that the own-price elasticity is approximately -2.25. For a value of ÷ close to zero,
the overall pattern in the evolution of the quality index remains the same, but the upward trend is
less pronounced. To understand this result, we need to also consider the evolution of prices. Panel
A displays the model-weighted average price of all models on the market at a particular point in
time.18 We observe a sharp decrease in prices after the 2004 revision followed by a steady increase.
Setting ÷ close to zero implies that we have a weak adjustment for price in the estimation of quality.
The quality index will thus capture the e�ect of a change in average price. If prices increase on
average, this will bias the quality index downward. This is exactly what we observe. On the other
hand, if we set ÷ too high, the bias will be in the other direction. In the present case, a larger
value of ÷ has a small impact and leads to a slightly more pronounced increase in quality following
the 2007 revision in the minimum standard (second vertical line). Overall, the calibration of the
price coe�cient does have an impact on the quality index, but the overall patterns are robust for
a wide range of values. In Appendix C, we show similar results for the other appliance categories.
In sum, the calibration of the price coe�cient is rather inconsequential for our main qualitative
conclusions.

Product age should be strongly correlated with a number of unobservables confounded with the
vertical component of quality, such as product placement strategies (online and brick-and-mortar),
inventories, product reviews, and sales agent strategies. Our flexible controls for product age aim
to rule out these e�ects. Panel B shows that product age has an important impact on the slope
of the quality index, but it has an even more important e�ect on the magnitude of the discrete
change in quality at the 2004 revision. Without the controls for product age, we observe a sharp
and large increase in quality because a large number of new models entered the market exactly
the month following the standard change (Figure 2). There is then a strong first-month-of-age

18To compute this average price, we expressed all prices in 2011 $ and first computed the average price
over the entire lifetime for each model in the sample. The average price that we report is the model-weighted
average of the average lifetime prices.
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e�ect19 that—if left uncounted for—can be confounded by a large increase in quality. For all six
appliance categories, we found that controlling for product age has the larger impact on the results.
Nevertheless, our main conclusion that quality has tended to increase and is correlated with the
timing of revision in standards is robust to this modeling assumption.

Panel C compares quality indexes that rely on di�erent specifications to control for unobserved
horizontal product di�erentiation. At one extreme, we do not include any controls and use a simple
logit model. At the other extreme, we experiment with a nested logit where we substantially increase
the number of nests. In our preferred specification, the k-means clustering analysis suggests that
we rely on 5 clusters (nests) (Appendix B). For this sensitivity test, we consider a model with 28
nests. Overall, the nest structure has little impact on the quality index. We also found similar
results when experimenting with the distance function. We believe that the fact that our product
definition is very disaggregated combined with the fact that consumer preferences might be defined
primarily over the main attributes play an important role here. Our results suggest that the product
fixed e�ects do well in capturing all the time invariant attributes of a product and idiosyncratic
consumer preferences are tightly distributed around these fixed e�ects.

Finally, Panel D compares the model-weighted index to the sales-weighted index. Because our
primary goal is to understand how firms respond to more stringent standards, moments and/or
quantiles of the model-weighted distribution of quality in the whole choice set are the most rele-
vant.20 A sales-weighted index would be more relevant to understand how consumers experienced
quality change during that period, and thus it informs us about the welfare gain due to an increase
in quality o�ered. In the present case, the sales-weighted quality index also increases over time,
and the size of the increase during the whole sample period is larger relative to the model-weighted
index, suggesting that any improvement in quality o�ered will be magnified by the increase in
demand for those products. Again, this pattern holds in the other appliance categories.

6.2. Quantifying the Change in Quality

We propose four approaches to measure the change in quality at the time of a standard change:
a first-di�erence estimator, a di�erences-in-di�erence estimator, a first-di�erence estimator with
matching, and a di�erences-in-di�erence estimator with matching. For all four estimators, the first
di�erence consists of comparing products that exited the market at the time of a standard revision

19This e�ect can readily be seen by inspecting the month-of-age fixed e�ects in the regression results.
20For the analysis, we focus on the mean, but we could easily consider the median or other quantiles.
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to products that entered the market during the same period. In particular, for each standard
revision in a given appliance category, we compare products that exited the year prior or the
year of the standard change to the products that entered the market the year prior or the year
of the revision. We focus on this sub-sample of products as an attempt to capture the marginal
e�ect of the regulation. Our rationale is that products that exited just the year before or the
year of a standard change may have done so because they did not comply with the new standard,
and products that entered at this time were meant to replace these noncompliant products.21 In
Appendix D, we show that the above criteria used to identify products that are likely to be marginal
to the regulation perform well. For instance, most clothes washer models that exited the years of
the 2004 or 2007 revisions in the minimum standard do not meet the more stringent standard and
entering models tend to bunch or exceed the new standard. We found similar patterns for other
appliance categories.

For revision events where the minimum and ES standards were both revised simultaneously, we
quantify the change in quality for ES certified products22 and products that were never certified.23

The goal here is to distinguish the e�ects of the two di�erent types of regulations. It also shows
how tightening energy e�ciency standards for products at the lower or higher end of the energy
e�ciency distribution di�ers.

We exclude from the analysis regulatory events that consist of the expansion of the ES certifica-
tion to new appliance categories. This includes the 2003 ES standards for compact refrigerators and
freezers, the 2003 ES standard for room air conditioners without louvered sides, and the 2005 ES
standard for room air conditioners with reverse cycle. Our focus is thus exclusively on regulatory

21We define noncompliance using the year prior to or the year of the revision because although manu-
facturers have the ability to time their inventory decisions to correspond with a standard change, several
noncompliant products stay on the market after a new standard is enacted. The same is true for newly
compliant products, which are mostly introduced after a standard change, but some appear in the market
in the months preceding a revision e�ective date.

22Products that were certified, but lost the ES certification following a revision in the ES requirement are
classified as being ES certified in the regression analysis. Note that these models correspond exactly to the
products that we consider marginal to the regulation.

23In the appliance market, it can be argued that manufacturers’ costs of certifying a given product are
almost zero if that product meets the ES certification requirement. Products that were never ES certified
thus correspond to products that consume too much electricity to earn the certification, but still meet the
minimum standard.
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changes that consisted of tightening of an existing standard. These are the events for which we can
confidently identify compliant and noncompliant models.24

For the di�erences-in-di�erence (DiD) estimators, the goal of the second di�erence is to rule out
temporal shocks and trends a�ecting the whole appliance market. We are particularly concerned
by the e�ect of a long-term declining trend in appliance prices documented in Spurlock (2014).
Moreover, whether the increase in quality in several appliance categories displayed in Figure 1 is
entirely due to standards or reflects a secular trend for the whole appliance market is also unclear.
We implement the DiD by estimating the change in quality associated with revision events in all
six appliance categories with a single regression model that includes year-of-sample fixed e�ects.
In particular, the model that we estimate is:
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where Comp

s
j is a 1-0 dummy variable that takes a value of one if product j in the appliance category

k is compliant with a new regulation s, and NoComp

s
j is defined similarly, but for noncompliant

products. Note that in this specification, the set of all regulation events across the six appliance
categories is S, and each event is indexed by s. The variable T ime

s
t is a 1-0 dummy variable

that takes a value one if the year t is before, during or after the revision event s. The dummy
variables ESj and NoESj identify ES-certified and non-ES-certified products, respectively. Finally,
–t represents year-of-sample fixed e�ects and –k represents appliance category fixed e�ects. We
implement the first-di�erence estimator with exactly the same regression model, except that we
omit the year-of-sample fixed e�ects. In Equation 5, the coe�cient —

1s measures the mean quality
in the years preceding, spanning and following the revision event s for all compliant products, i.e.,
newly introduced models, that are ES certified. The coe�cient —

2s has a similar interpretation
for noncompliant ES-certified models. The change in quality for a revision event s for ES-certified

24When the DOE and the EPA decide to expand the ES certification to new products, they usually
consider the share of products that exceed the minimum standard. In this case, compliant models are thus
products that may have been on the market for a long time and were not first introduced to meet an energy
e�ciency standard.
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products is thus given by �Quality

s
ES = —

1s ≠ —

2s. For non-ES-certified products, the change in
quality is given by �Quality

s
NoES = —

3s ≠ —

4s.

Note that the change in quality estimated by Equation 5 (and similarly for the first-di�erence es-
timator) compares newly introduced products to exiting products controlling for only one attribute:
whether or not a product meets the ES certification. It thus captures the change in quality in all
dimensions of the products, except for prices and the ES certification. Moreover, it captures not
only the changing quality within product lines, but also the e�ect of the introduction (scrapping)
of new (old) product lines, i.e. change in quality across product lines. To illustrate, consider the
case of clothes washers. For the 2004 revision, the important technological innovation that allowed
manufacturers to increase energy and water e�ciency was to change the design from top-loading
to front-loading. During that period, some manufacturers, especially Whirlpool, were also better
at designing front-load washers given that they introduced the first front-load models a few years
prior to the 2004 revision. Following the 2004 revision, the change in quality was then driven by
two e�ects. First, there was a large increase in the number of product lines with front-load models.
Indeed, as shown in Figure 5, there was a large increase in model share for front-load washers
that started in 2004. Second, existing product lines of front-load models were improved to match
the 2004 minimum and ES standards. As a result, for this particular revision event, the change
in quality captures both the introduction of a new innovation (front-loading) and incremental im-
provement in this technology. The composition of the quality index with respect to technology,
and more generally with respect to the type of product lines, is thus changing over time. The goal
of our matching estimators is to account for composition e�ects and thus estimate quality changes
only within product lines, i.e., to capture incremental improvement in technology. We do so by
identifying product lines that span the revision period of each standard and control for product
line fixed e�ects. In practice, we implement this estimator by adding product line fixed e�ects, –l,
to Equation 5. To illustrate, a product line for clothes washers consists of all products o�ered by
the same manufacturer and that have the same brand, same door type (front-load versus top-load),
same size, and same price point, where size and price are defined by a categorical variable that take
three values. We use similar criteria for other appliance categories. We refer to this approach as a
matching estimator because it comes as close as possible to comparing products that manufacturers
introduced to replace noncompliant products.

From a policy perspective, whether it is more appropriate to focus on the estimators with or
without matching is open to discussion. In the rulemaking analysis for minimum energy e�ciency
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standards, historically consumer net benefits associated with more stringent standards were com-
puted holding all attributes constant, and only the trade-o� between the purchase price and energy
savings was considered. This practice includes all the standards that came into e�ect during the
time period of our analysis. The implicit assumption in this practice is that following a revision,
consumers can substitute for products that are identical in design, except for their energy use and
purchase price. Substitution e�ects between products of di�erent design (or even brands) are thus
implicitly ruled out. The matching estimators aim to rule out substitution e�ects. They are thus
the most appropriate estimates to inform the rulemaking analyses under this set of assumptions.
However, since 2015, standard rulemaking analyses have incorporated a consumer choice model,
which models the degree to which consumers may substitute between products of di�erent design
(i.e. product class), price point, and energy use level following a standard revision. The non-
matching estimators are thus also equally important to consider as they also capture change in
quality across product lines, and better reflect current standard analysis practices.

Table 2 reports the results for all four estimators. Across all appliance categories, we focus on
the revisions that occurred between 2002 and 2010 because the years 2001 and 2011 correspond to
entry and exit dates, respectively, for all products in our panel.25 Under this criterion, we have
three revisions in minimum standards that impacted two appliance categories: clothes washers and
dishwashers. Note that for clothes washers, but not for dishwashers, a revision in the ES requirement
was also concordant with the revision in the minimum standard. Focusing on the first-di�erence
estimator (Specification I), with the exception of ES-certified dishwashers in 2010, we observe an
increase in quality—new products that just entered the market following a standard revision were
then of higher overall quality relative to the models that were pushed out of the market by the
more stringent standards. For revision events that exclusively targeted the ES requirement, we
also observe increases in quality. The increases are statistically significant, except for ES-certified
dishwashers a�ected by the January 2007 revision and the ES-certified refrigerators a�ected by the
January 2004 revision. The magnitude of the increases is also economically significant. Indeed,
given the logit-based micro-foundation of the index, a relative change in quality has a welfare
interpretation. For a given change in quality, we can compute the equivalent or compensating
change in price that would bring the same level of utility.26 For instance, suppose that the estimated

25Under our criterion to identify products that are marginal to a regulation change, all products present
in the year 2001 or the year 2011 would be classified as marginal for standard revision that occurred in those
years.

26The demand model excludes income e�ects. The equivalent and compensating variations are therefore
equal to each other.
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change in quality is 1; the equivalent/compensating variation will then be $1/|÷|. For our preferred
value of |÷| = 0.0045, this thus corresponds to $222.27 In Appendix C, we show how the results from
Table 2 translate into a money metric and present the results for di�erent values of |÷|. We present
regression results (Table C.1) for a value of |÷| closer to zero (0.0005), i.e., for a high marginal
utility of income, and find that the increase in quality at the time of revisions tends to be smaller,
but the signs remain the same and the results remain statistically significant. For a low marginal
utility of income (|÷|=0.0075), the estimated changes in quality are larger (Table C.2). Whereas
the estimated changes in quality are robust to the value of the marginal utility of income used for
the calibration, the estimates translated into a money metric are much more sensitive (Table C.3).
For this reason, we refrain from basing our main conclusions on the exact economic value of the
changes in quality, but focus on the sign and the fact that they are economically significant for a
wide range of values of |÷|.

Comparing the price-adjusted quality index to the change in prices can inform the welfare sign
of revision in a standard. If the overall vertical quality increases and price decrease, on average, we
have an unambiguously improvement in welfare for consumers. Table 7 presents regression results
for the same four estimators using the log of price28 or the log of electricity consumption (kWh/y)
as a dependent variable. The results correspond to the percentage change in price or electricity
consumption at the time of the revisions. For the 2004 revision in minimum standard for clothes
washers, we observe a large and statistically significant decrease in prices (Specification I, Table
7). For the 2004 revision for clothes washers, we also found an increase in overall quality, which
suggests an improvement in consumer welfare.

Adding year-of-sample fixed e�ects (Specification II, di�-in-di�) tends to decrease the magnitude
of the estimates. This is true for both quality (Table 2) and price (Table 7), but less so for energy
use (Table 7). This implies that quality and prices were likely to be subject to unobserved shocks
that a�ected the whole U.S. appliance market during this period.

27An alternative interpretation of the estimated changes in quality can also be done as follows. If we were
to compare two products with exactly the same price and outside option that belongs to the same product
nest, an increase of 0.5 point in quality, for instance, would translate in a sales ratio of exp(0.5) =¥ 1.6. In
a logit-based model, the sales ratio is simply given by exp (�Quality). To see this, consider the ratio of the
choice probabilities of two products, e.g., P

new

/P

old = exp(Unew)/exp(Uold). If the two products are exactly
the same, except for the level of vertical quality, we have P

new

/P

old = exp

!
Quality

new ≠ Quality

old

"
=. If

the di�erence in quality is 0.5 point, then P

new

/P

old = exp(0.5) ¥ 1.6.
28For each product, we use the average deflated price over the lifetime of the product.
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Adding product line fixed e�ects (matching estimators, Specifications III and IV) decreases
the magnitude of the estimates, in most cases. This is to be expected. As explained above, the
matching estimators capture only change in quality within a product line, and rule out change
in quality across product lines. Although smaller, several of the estimates remain economically
and statistically significant. For prices, adding product line fixed e�ects has an important e�ect
on the magnitude of the estimates (Specification III and IV, Table 7). Again the magnitude of
the estimates is smaller. For revision events where prices decreased under Specifications I and II,
the estimates are now non-statistically significant. The matching estimators thus suggest that the
changes in prices of the new models relative to the noncompliant models were somewhat modest,
although we observe large increases in overall quality.

Across the various standard revisions, the January 2007 revision in the minimum and ES stan-
dards for clothes washers and the January 2009 revision in the ES standard for this same appliance
category both led to a particularly large increase in quality. These results hold for the four estima-
tors. For these revisions, the changes in prices were small and not statistically significant, which
suggests that these more stringent standards may have made consumers better o�.

7. Energy E�ciency Adjusted Quality

The price-adjusted quality index captures all time invariant attributes of a product. It does not
inform to what extent manufacturers trade o�s energy use with other attributes. As discussed
in Section 3, energy e�ciency standards can induce an expansion or contraction of quality in the
non-energy dimensions of the product space for two reasons. First, the standards are attribute-
based and thus it may be easier for manufacturers to meet a certain energy e�ciency requirement by
adjusting a non-energy attribute, such as size, implicitly targeted by the regulation. Second, setting
standards in imperfectly competitive markets creates incentives for firms to further di�erentiate
their products, which may lead to expansion in quality. In this section, we use two approaches
to measure the evolution of quality in the non-energy dimension. The first approach provides a
lower bound of an energy e�ciency-price-adjusted quality index. Under this approach, we assume
that all consumers discount future energy costs using a discount rate on par with other investment
opportunities. In the second approach, we let the data reveal how consumers value future energy
costs and estimate the marginal willingness to pay for specific attributes, as in a standard demand
estimation with di�erentiated products (Berry, Levinsohn, and Pakes 1995). We implement this
latter estimator by correlating the price-adjusted quality index with a large number of attributes
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using a LASSO regression. Using our estimates of the willingness to pay for energy e�ciency, we
can then compute an energy e�ciency-price-adjusted quality index. Both approaches suggest that
more stringent standards may have led to an expansion of quality in the non-energy dimension.

7.1. Lower Bound Approach

For most products in our sample, we observe the electricity consumption per year that is reported by
the manufacturers.29 Note that this information, together with an estimate of the yearly operating
costs, is reported for all appliance models sold in the marketplace with the mandatory energy label
EnergyGuide. The extent to which consumers use that information and trade o� future operating
costs with purchase prices in the appliance market is unclear. Houde (2014b) found evidence that
some consumers may rely on energy information when purchasing refrigerators, but most may
simply dismiss this information. Davis and Metcalf (2014) provide survey data consistent with this
finding. Older studies (see Train (1985) for a comprehensive review) also found evidence suggesting
that consumers may steeply discount energy costs in the appliance market.

In the present application, we will derive a lower bound on a measure of energy-e�ciency-price-
adjusted quality by assuming that all consumers trade o� future energy operating costs in a way
that is consistent with the opportunity cost of money they may face. For instance, if consumers can
earn an average return of 5% on their investments, we will assume that they trade o� future energy
operating costs of the appliance they purchase with this discount rate. Under this assumption and
for a given estimate of the expected lifetime of a product, there is a direct link between the marginal
utility of income and how much consumers should value a stream of future electricity costs. To see
this, assume that consumers do not account for the e�ect of depreciation, and compute the lifetime
electricity costs (LCr,j) by summing and discounting the expected annual electricity costs (Cr,j)
over the lifetime of the durable:

(6) LCr,j =
Lÿ

t=1
fl

t
Cr,j = 1 ≠ fl

L

1 ≠ fl

Cr,j ,

where L is the lifetime of the durable, fl = 1/(1 + r) is the discount factor, and r is the discount
rate. Consistent with the fact that |÷| corresponds to the marginal utility of income, the coe�cient
for the sensitivity to annual energy costs in a demand model, say ◊, can be expressed as a reduced

29For some products, this information is missing. We simply exclude these products from the current
analysis.
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form parameter corresponding to:

(7) ◊ = ÷

1 ≠ fl

L

1 ≠ fl

.

For a given value of r, ÷, L, and electricity price (pe), we can thus compute a price and energy
e�ciency-adjusted quality index: ›j = “j ≠ ◊pekWh/y, where “j is the price-adjusted quality index
estimated for a given value of ÷. We consider that the index ›j is a lower bound of a measure of
quality in the non-energy dimension because it assumes that all consumers consider energy costs
and do so in a way that is consistent with a market interest rate. Arguably, not all consumers
may consider energy costs, and even if they do so they might discount them at a steeper rate. By
over-estimating the valuation of energy costs, ›j is underestimated and thus corresponds to a lower
bound.

Figure 4 shows the energy e�ciency-price-adjusted quality index for five appliance categories.30

Relative to the price-adjusted quality index, this index displays a lower level of quality, but we
nonetheless observe increasing trends. This suggests that quality in the non-energy dimension
might have been increasing.

Table 4 presents regression results for the same four estimators considered above. Compared
with results of the price-adjusted index (Table 2), we only find a sign change for the January 2004
revision of the minimum standard for clothes washers. This decrease in quality is, however, largely
compensated by the large increase in quality for the 2007 revision. Why did the two revision events
for this same appliance category have di�erent e�ects on quality in the non-energy dimension? To
understand this, it is important to consider the institutional details of these two revisions. In the
early 2000s, the DOE announced to the manufacturers a plan to tighten substantially the minimum
standard for clothes washers. Manufacturers were, however, concerned that they could not meet
this standard at a reasonable cost. Following negotiations with manufacturers and trade groups,
the DOE opted to implement the tightening of the minimum standard in two phases, where the
major revision became e�ective in January 2004 and a smaller incremental change occurred in
2007.31 Our results show that the 2004 standard was stringent enough to induce manufacturers
to trade o� energy e�ciency with other dimensions of quality. That is, meeting the higher energy

30Room air conditioners were excluded from this analysis because we do not have enough information to
compute annual energy use for this appliance category. We only observe the energy e�ciency ratio, which
cannot be readily converted into electricity use.

31This explains why we see a large decrease in energy consumption in 2004, but a more modest decrease
in 2007 (Figure 2).
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e�ciency requirements came at a cost of a decrease in quality. We find these results particularly
plausible given that there were numerous consumer complaints and class-action suits that were
made regarding front-load washers produced during the 2001-2008 period.

For the other appliance categories, results from Table 4 suggest an increase in quality in the non-
energy dimension at the time that the standards were revised, except for ES-certified dishwashers
in 2010. Note that for dishwashers, there is a discrepancy between the graphical evidence of
Figure 4 and the regression results for the January 2007 revision of the ES standard. According to
the regression results, the quality of newly ES-compliant dishwasher models increased relative to
noncompliant models exiting the market during the 2006-2007 period, but the index displays a sharp
decrease in January 2007. This di�erence is due to the fact that several newly compliant models
of high quality, as suggested by our estimates, entered the market a few months before the revised
standard was enacted and several noncompliant models with low quality stayed on the market a
few months after the revision e�ective date, which contributes to a sharp decrease graphically.
The regression model, however, averages the quality of all the compliant and noncompliant models
irrespective of the entry or exit month during the period 2006-2007.

Overall, even after making a generous adjustment for how consumers may value energy costs,
we find evidence that quality in the non-energy dimension has increased in several instances. We
now turn to our second approach and reach a similar conclusion.

7.2. LASSO Approach

In this second approach, we turn to estimation to quantify the valuation of energy costs ◊. We only
perform the estimation for clothes washers given that this is the only category for which we have
an extensive list of product characteristics. From the users’ manuals, we compiled a list of more
than 45 di�erent product characteristics describing the various technologies used by manufacturers
over the sample period (see Table F.1, Appendix F).

For the estimation, we correlate the price-adjusted quality index of each product j with a vec-
tor of product characteristics Xj . In essence, we are performing the intermediate step of Berry,
Levinsohn, and Pakes (1995)’s estimation procedure, where mean utilities are regressed on product
characteristics. In our case, however, we are not concerned with the estimation of the price coef-
ficient and possible correlation with price and unobserved characteristics, given that we ruled out
the e�ect of price via calibration. Our challenge is to work with a high dimensional product space,
where some characteristics might be collinear with others, and not all of them might be valued by
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consumers. Formally, we are dealing with a high dimensional sparse demand model. Recent ad-
vances in econometrics (Belloni, Chernozhukov, Hansen, and Kozbur 2014; Belloni, Chernozhukov,
and Hansen 2014) have been proposed for computing and making inference with such models. We
draw from this literature and especially from Gillen, Shum, and Moon (2014), who propose the
LASSO-BLP algorithm. Again, the fact that we rely on calibration to account for the e�ect of price,
greatly simplifies our estimation. Gillen, Shum, and Moon (2014) propose a three-step estimation
procedure. In our case, we will simply run one LASSO-type penalized regression (Tibshirani 1996)
where the goal is to find the elements of the whole vector of product characteristics Xj that best
predict the price-adjusted quality index. Before turning to estimation, we show graphical evidence
that the quality index for clothes washers is correlated with some salient attributes, the number of
attributes, and trademarking.

7.2.1. Stylized Facts

Panel A of Figure 5 shows the model share of front-load models over time. We see an increasing
trend, which started around the time of the first revision in the minimum standard in January 2004
and tapered o� toward the end of 2009, just before the revision in the ES standard. According to
industry experts, the front-load design was crucial to achieve the important gain in energy e�ciency
observed in 2004 and was the main innovation used to meet the more stringent standard that became
e�ective in 2004. We also observe that size (Panel A, gray dotted line), measured by tube capacity,
has also been steadily increasing and the trend became more pronounced following the second
revision in the minimum standard in January 2007. Note that the minimum and ES standards
for clothes washers di�er for compact and standard sized models and are set as a function of size
within each of these product class categories. The expansion in tube capacity could then be partly
the result of the new stringent standards that would have implicitly incentivized manufacturers to
meet the energy e�ciency standard with larger size models.

Panel B shows two proxies for motor performance, the spin speed and the number of cycles.32

Spin speed has been steadily increasing, but the number of cycles first increased following the 2004
revision and then dropped sharply at the time of the 2007 revision. It thus appears that to meet
the more stringent standards, the technology may have required a trade-o�f with cycle technology
and energy e�ciency.

32The number of cycles refers to the number of separate cycle options a consumer can select (e.g., perma-
nent press, regular, heavy duty, extra rinse). This variable is coded as a categorical variable that identifies
a range instead of the precise number of cycles.
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Panels C through F show the evolution of the number of features during the sample period. In
all panels, we distinguish between front-load and top-load models. To count the number of features
present on a given appliance model, we use a dummy variable that takes the value of one if a
particular feature was listed in the user’s manual and zero otherwise. In these data, a feature is
defined as a particular technology that we track over the whole sample period. Panel C shows the
average number of features on a given appliance model. We observe an increase in the number of
features for both types of clothes washers, but a much larger increase for front-load. During this
period, the front-load design was an important innovation. It is thus interesting to observe that
innovation in the overall design was also accompanied by the addition of new features. In Panel
C, we also observe a discrete increase in the number of features for top-load models at the 2007
revision. This means that the models introduced to comply with the new regulation were also
subject to some innovation. Panels D and E distinguish whether these new features were directed
toward achieving energy e�ciency or to other dimensions. Panel D shows the evolution of energy
e�ciency-related features, which are features that have been identified by discussions with appliance
experts as enabling higher energy e�ciency performance (see Table F.1, Appendix F). We find that
for both front-load and top-load models these features increased throughout the sample period with
a sharp increase at the 2007 revision. Panel E shows non-energy e�ciency-related features. For
front-load models, we still observe a sharp increase in the average number of features at the 2007
revision. For top-load models, we also observe an increase in non-energy e�ciency features, but
of much smaller magnitude compared to the energy e�ciency-related features. Altogether, this
suggests that for front-load models, innovation at the time of the revision in standards was directed
toward both energy e�ciency and other dimensions of the product space. On the other hand, for
top-load models, innovation was mostly directed toward energy e�ciency.

Finally, Panel F provides additional evidence that manufacturers directed most of their innova-
tion toward front-load models during that period, but that innovation was not purely related to
energy e�ciency. We observe that on average the number of trademarked features has increased
for both types of models, but the rate of increase is much more pronounced for front-load relative
to top-load models. For both types of models, we also observe a sharp increase in the year 2007.
These trends in trademarking could suggest that manufacturers attempted to signal higher quality
and di�erentiate their products beyond energy e�ciency following the revisions in standards.
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7.2.2. Estimation

The above stylized facts show that the revisions in standards for clothes washers led to the intro-
duction of new features. The overall increase in quality (Figure 1, Panel A) is thus correlated with
an increase in energy e�ciency, features and trademarks. The estimator that we propose aims to
distinguish whether consumers value improvement in energy e�ciency itself, or the various features
that may or may not be related to energy e�ciency.

The estimator consists of a LASSO-type penalized regression method, a well-known machine
learning technique, which has only been used in economics recently. In essence, a LASSO regression
minimizes the mean square error plus a penalty term that consists of the sum of the coe�cients.
The penalty term is an l

1-norm and thus sets to zero the coe�cients that have a weak correlation
with the dependent variable. The LASSO approach thus selects the most powerful predictors from
a large set of potential explanatory variables. This technique is a data-driven selection method
that can be applied in contexts where the number of regressors is large, possibly larger than the
number of observations, and multi-colinearity is severe.

For the present application, we use the Post-LASSO method, which, as discussed by Belloni,
Chernozhukov, and Hansen (2014), has the advantage of minimizing the bias toward zero that arises
in the standard LASSO approach. It allows inference by recovering valid confidence intervals. We
implement the Post-LASSO approach using the algorithm proposed by Friedman, Hastie, and
Tibshirani (2009) and implemented in R. Additional details on our implementation can be found
in Appendix F.

Tables 5 and 6 presents the estimation results. We estimated a separate LASSO regression for
front-load and top-load models after experimenting with interaction terms.33 The first important
results are that the coe�cients on energy use (kWh/y) and size (tube capacity) are both selected,
are statistically significant and are of expected sign. The coe�cients are also of similar magnitude
for front-load and top-load models. Using the same assumption used in the precedent section to
calibrate the valuation of energy costs, the coe�cients on electricity consumption for front-load
and top-load models correspond to an implicit discount rate of 32% and 62%, respectively. This
suggests a substantial undervaluation of future energy costs compared to the 5% discount rate that
we used above. In Tables 5 and 6, we compare the results from the Post-LASSO method with a
simple OLS regression. The OLS estimates of the coe�cient on electricity consumption come close

33We found that once we interact all features with a dummy that distinguishes front-load and top-load
models, the dummy itself was not selected by the LASSO algorithm.
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to the LASSO estimates. This means there is a strong correlation between price-adjusted quality
and the measure of energy use reported by manufacturers, and this correlation is robust and likely
not to be confounded by a correlation with other attributes.

Using the LASSO estimates, we compute a price-energy e�ciency-adjusted quality index by
predicting quality excluding the coe�cient on electricity consumption. That is, we take the vector
of estimated LASSO coe�cients, —̂

LASSO, set the coe�cient on energy use to zero, and predict
quality by computing ›̂j = —̂

LASSO
EE=0 Xj . Figure 6 shows this predicted index. As a benchmark,

we also show the price-adjusted quality index predicted by the LASSO approach, and the index
computed in Section 5 obtained directly from estimating “j . Comparing these two price-adjusted
indexes, the LASSO approach overpredicts the increase in quality at the 2004 revision, but it tends
to under-predict the increase in quality in subsequent years relative to the estimated index. Note
that the large jump in quality predicted by the LASSO approach captures the sharp decreases in
energy use induced by the 2004 revision (Figure 2, Panel A). As shown by the sensitivity tests,
the estimated index probably tends to underpredict this increase due to the month-of-age fixed
e�ects. Once we remove the e�ect of electricity cost, the LASSO approach shows a steady increase
in quality in the non-energy dimension over the whole sample period, where the increasing trend
starts following the 2004 revision and increases further following the 2007 revision. In Tables 5 and
6, we quantify the change in this price-energy e�ciency-adjusted quality index. We present only
the first-di�erence estimators because we only performed the estimation for one appliance category.
The regression results are consistent with the previous findings and suggest that for most of the
revision events, quality of newly compliant models increases relative to noncompliant models.

An interesting finding from Figure 5 is that the average size of clothes washers has been increasing
over time and was a�ected by the revisions in the minimum standards. In the LASSO regressions,
the coe�cients on size are relatively large and statistically significant for both front-load and
top-load models, which suggests that consumers have a high willingness to pay for larger clothes
washers. Therefore, how much of the increase in quality in the non-energy e�ciency dimension can
be attributed to manufacturers o�ering large models? Figure 6 shows the evolution of a quality
index where the e�ect of both energy e�ciency and size were removed.34 We observe that the index
remains constant until the 2007 revision, after which it starts decreasing. Figure 6 thus implies
that the increase in features and trademarks in the post-2007 period was not a main driver of
improvement in quality during this period.

34To compute this index, we proceeded as before. We predicted quality using the LASSO estimates where
the coe�cients on energy use and size were set to zero.
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8. Conclusion

In this paper, we estimate the price-adjusted quality of products in the main appliance categories.
We show that overall quality has increased or remain constant in the U.S. appliance market during
the 2001-2011 period. More importantly, we observe large discrete changes in quality that coincide
with revisions in energy e�ciency standards, which include both minimum and energy e�ciency
standards. We present various estimators to quantify the changes in quality and price for appliance
models that are the most likely to be marginal to the regulation. In most instances, we find
economically and statistically significant increases in quality, but no statistically significant changes
in prices. Together, these two e�ects suggest that more stringent standards may have been welfare
improving for consumers. We also find evidence that the increase in overall quality is driven by
improvement in energy e�ciency over time, but not entirely. We show that quality in the non-
energy dimensions has increased. We also document that manufacturers may have attempted to
increase quality following revisions in standards by increasing features and trademark technologies.

The fact that energy e�ciency standards could lead to improvement in quality beyond energy
e�ciency, increase product diversity, but also have little e�ect on prices challenges the common
paradigm. These findings are, however, consistent with the presence of imperfect competition in this
market. Several theoretical papers have demonstrated that imperfect competition could, in fact,
be a rationale for quality standards. Our findings are only a preliminary step in understanding the
role that imperfect competition combined with standards plays in the market for energy intensive
durables.
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Figure 1. The Evolution of Quality in the Appliance Market
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Table 1. Change in Price-Adjusted Quality

Year Clothes Washers Dishwashers Room Air
Conditioners

Refrigerators-
Freezers

1988 (1) 1st MES (1) 1st MES
...

1990 (1) 1st MES (1) 1st MES
...

1993 (1) 2nd MES
1994 (1) 2nd MES (1) 2nd MES

...

1996 (6) ES start (10) ES start (6) ES start*
1997 (5) ES start

...

2000 (10) ES; (10)
2nd MES

2001 (1) ES (1) ES (1) ES*; (7)
3rd MES

...

2003 (9) TP (10) ESù (1) ES†
2004 (1) 3rd MES Tier 1; (1) ES (1) ES*
2005 (11) ESùù

...

2007 (1) 3rd MES Tier 2; (1) ES (1) ES
2008 (4) ES*
2009 (7) ES (8) ES
2010 (1) 3rd MES
2011 (1) 4th MES; (1) ES
2012 (4) TP (1) ES; (12) TP
2013 (2) ES (1) 4th MES (10) ES
2014 (1) ES (6) 3rd MES;

(5) ES
(9) ES; (4)
TP;
(9) 4th MES

Notes: The Table describes the timing of past federal regulatory action taken for clothes
washers (CW), room air conditioners (RACs), refrigerators (REF) and dishwashers (DW).
Legend: Numbers (1st, 2nd, etc.) = the order of the federal minimum e�ciency standards
(MES) e�ective dates; ES = ENERGY STAR criteria changed; and TP = Test Procedure
changed; month e�ective shown in parentheses. Additionally, for refrigerators the symbol *
signifies changes to the ES policy that a�ected full-sized refrigerators only, while the symbol
† signifies changes that a�ected compact refrigerator/freezers and freezers only. ù The 2003
RAC standard was only an expansion to cover RACs without louvered sides. ùù The 2005
RAC standard was only an expansion to cover RACs with reverse cycle.
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Table 2. Change in Price-Adjusted Quality

Dep. Variable: First-Di� Di�-in-Di� First-Di� Di�-in-Di�
Price-Adjusted Quality Index w. Matching w. Matching
Revision Non-ES �QI t-stat �QI t-stat �QI t-stat �QI t-stat
Event vs. ES

CW: MES 01/2004 Non-ES 1.30 3.94 0.96 3.16 0.89 2.61 0.47 1.52
ES 3.03 8.46 2.68 8.13 2.02 4.36 1.58 3.81

CW: MES 01/2007 Non-ES 3.29 9.95 3.05 10.29 3.09 8.15 3.16 9.52
ES 3.31 8.39 3.25 9.21 2.08 4.35 2.19 5.23

DW: MES 01/2010 Non-ES 1.17 2.79 0.49 1.30 1.05 2.34 0.41 1.04
ES -1.34 -1.76 -1.93 -2.85 0.09 0.11 -0.90 -1.30

CW: ES 01/2009 ES 5.03 5.02 4.63 5.21 4.89 3.93 4.70 4.32
DW: ES 01/2007 ES 0.52 1.46 0.43 1.32 0.40 1.06 -0.04 -0.12
DW: ES 01/2009 ES 1.94 5.77 1.34 4.42 0.78 2.09 1.30 3.97
REF: ES 01/2004 ES 0.45 0.89 0.18 0.39 0.19 0.33 -0.14 -0.29
REF: ES 04/2008 ES 2.01 9.45 1.73 9.07 2.17 9.94 2.00 10.41
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes

Notes: Clothes Washers (CW); Dishwashers (DW), Full-Size Refrigerators (REF). The t-
statistic that rejects the null hypothesis (the coe�cient is not di�erent than zero) at the 5%
level takes a value of +/≠1.97. All t-stats greater than |1.97| identifies coe�cients significant
at the 5% level.
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Table 3. Changes in Prices and Electricity

Dep. Variable: First-Di� Di�-in-Di� First-Di� Di�-in-Di�
log(price) w. Matching w. Matching
Revision Non-ES �QI t-stat �QI t-stat �QI t-stat �QI t-stat
Event vs. ES

CW: MES 01/2004 Non-ES -0.14 -2.17 -0.08 -1.17 -0.09 -1.31 -0.03 -0.38
ES 0.30 4.43 0.36 5.21 -0.04 -0.49 0.02 0.21

CW: MES 01/2007 Non-ES 0.12 1.85 0.11 1.66 0.09 1.27 0.07 0.98
ES 0.04 0.54 0.03 0.34 -0.04 -0.44 -0.07 -0.66

DW: MES 01/2010 Non-ES 0.08 0.97 0.04 0.44 0.09 1.04 0.06 0.65
ES -0.64 -4.50 -0.71 -4.93 -0.04 -0.27 -0.09 -0.62

CW: ES 01/2009 ES 0.16 0.86 0.17 0.88 -0.01 -0.03 0.00 0.00
DW: ES 01/2007 ES 0.08 1.15 0.07 1.00 -0.03 -0.41 -0.06 -0.78
DW: ES 01/2009 ES 0.06 0.88 0.09 1.35 0.00 0.00 0.03 0.46
REF: ES 01/2004 ES 0.07 0.69 0.11 1.14 0.07 0.74 0.11 1.22
REF: ES 04/2008 ES 0.10 2.52 0.08 1.98 0.10 2.72 0.08 2.15
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes

Dep. Variable: log(kWh/y)

CW: MES 01/2004 Non-ES -0.52 -15.13 -0.52 -15.15 -0.54 -14.97 -0.54 -15.17
ES -0.46 -8.29 -0.46 -8.49 -0.42 -6.13 -0.42 -6.38

CW: MES 01/2007 Non-ES -0.35 -8.98 -0.35 -9.24 -0.39 -8.72 -0.39 -9.21
ES -0.45 -11.52 -0.45 -11.96 -0.20 -3.74 -0.21 -4.05

DW: MES 01/2010 Non-ES -0.20 -4.18 -0.16 -3.53 -0.13 -1.96 -0.07 -1.14
ES -0.02 -0.31 0.03 0.48 -0.04 -0.52 0.04 0.47

CW: ES 01/2009 ES -0.54 -5.53 -0.52 -5.64 -0.29 -2.25 -0.28 -2.26
DW: ES 01/2007 ES -0.16 -4.44 -0.11 -3.21 -0.15 -3.80 -0.12 -3.10
DW: ES 01/2009 ES -0.05 -1.50 -0.08 -2.50 -0.06 -1.50 -0.10 -2.54
REF: ES 01/2004 ES -0.04 -0.79 -0.04 -0.76 -0.04 -0.81 -0.04 -0.79
REF: ES 04/2008 ES -0.10 -4.86 -0.11 -5.33 -0.10 -5.01 -0.11 -5.47
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes

Notes: Clothes Washers (CW); Dishwashers (DW), Full-Size Refrigerators (REF). The t-
statistic that rejects the null hypothesis (the coe�cient is not di�erent than zero) at the 5%
level takes a value of +/≠1.97. All t-stats greater than |1.97| identifies coe�cients significant
at the 5% level.
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Table 4. Change in Price-EE-Adjusted Quality

Dep. Variable: First-Di� Di�-in-Di� First-Di� Di�-in-Di�
EE-Price-Adjusted Quality Index w. Matching w. Matching
Revision Non-ES �QI t-stat �QI t-stat �QI t-stat �QI t-stat
Event vs. ES

CW: MES 01/2004 Non-ES -0.52 -1.58 -0.67 -2.00 -1.03 -3.37 -1.05 -3.39
ES 0.99 1.91 0.88 1.72 0.25 0.45 0.23 0.42

CW: MES 01/2007 Non-ES 3.16 8.83 2.98 8.54 2.59 6.92 2.66 7.41
ES 2.80 7.76 2.72 7.72 2.56 6.07 2.64 6.52

DW: MES 01/2010 Non-ES 0.92 2.17 0.57 1.37 0.26 0.50 -0.09 -0.19
ES -1.18 -1.70 -1.62 -2.41 0.01 0.02 -0.69 -1.04

CW: ES 01/2009 ES 4.59 5.02 4.40 4.98 4.51 4.14 4.44 4.27
DW: ES 01/2007 ES 0.36 1.09 0.32 0.97 0.13 0.38 0.08 0.24
DW: ES 01/2009 ES 1.31 4.22 1.21 3.97 0.63 1.94 1.04 3.30
REF: ES 01/2004 ES 0.34 0.72 0.22 0.48 -0.43 -0.85 -0.44 -0.91
REF: ES 04/2008 ES 1.76 9.01 1.52 7.98 1.88 9.81 1.75 9.39
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes

Notes: Clothes Washers (CW); Dishwashers (DW), Full-Size Refrigerators (REF). The t-
statistic that rejects the null hypothesis (the coe�cient is not di�erent than zero) at the 5%
level takes a value of +/≠1.97. All t-stats greater than |1.97| identifies coe�cients significant
at the 5% level.
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Table 5. OLS and LASSO Regressions

OLS OLS LASSO LASSO
Top-Load Front-Load Top-Load Front-Load

Feature Est. s.e. Est. s.e. Est. s.e. Est. s.e.

kWh/y -0.01 -9.16 -0.02 -3.47 -0.01 -10.51 -0.01 -4.07
Size (Cu. Ft.) 1.29 3.02 2.30 4.49 1.35 3.68 2.37 5.50
# Cycles -0.08 -2.32 0.02 0.58 -0.08 -2.61 0.01 0.32
Add a Garnment 1.79 0.58 0.16 0.20 0.64 0.39
Advanced Motor Features 8.72 1.42 2.86 2.09 0.41 0.27 2.35 3.26
Automatic Timer 0.91 0.96
Bleach Dispenser -1.59 -1.09 -0.09 -0.05 -1.62 -1.46
Clean Action 0.02 0.03 -0.55 -1.00
Cold Temperature Default -0.54 -0.56 1.20 1.61 1.21 2.23
Cycle Status Remaining Time 2.72 1.66 -3.36 -3.99 -2.68 -4.12
Cycle Status End Signal -0.38 -0.82 2.47 3.27 -0.22 -0.55 1.57 3.09
Cycle Status Lights 2.13 3.04 1.11 1.94 2.28 3.92 0.53 1.29
Delay Start 2.32 1.36 -0.24 -0.37 -0.11 -0.19
Detergent Dispenser -2.05 -1.11 -0.86 -0.40 -0.37 -0.28
Dryer Ready -1.28 -1.03 -1.22 -1.04
ES-certified -0.59 -1.01 -0.49 -1.13
Electronic Control -2.76 -2.91 -1.76 -1.74 -2.07 -3.19 -1.62 -2.06
Extra Rinse -0.19 -0.43 -0.35 -0.56 -0.21 -0.51
Fabric Softener Dispenser -0.48 -0.55 -0.20 -0.14 -0.54 -0.70 -0.14 -0.22
Heater -1.43 -0.44 -0.01 -0.02
Injection Dispenser 1.04 0.54 -0.30 -0.49 -0.23 -0.49
Intercept 11.17 3.83 7.18 1.51
Maximum Spin Speed -1.09 -0.67 -0.20 -0.19 -0.29 -0.37
NSF Certified 1.65 0.89 -0.37 -0.62 1.20
Other Dispenser -1.12 -1.19 0.14 0.24
Other Features Tub 0.18 0.20 0.29 0.36
Programmable Control 0.36 0.24 0.76 1.74 0.68 1.77
Quickwash -0.29 -0.24 0.39 0.94 -0.91 -1.02 0.52 1.41
Remote Laundry Monitoring 2.61 1.79 2.29 2.15
Sanitize Cycle 1.63 1.21 1.26 2.78 1.74 1.74 1.13 2.99

Notes: The t-statistic that rejects the null hypothesis (the coe�cient is not di�erent than
zero) at the 5% level takes a value of +/≠1.97. All t-stats greater than |1.97| identifies
coe�cients significant at the 5% level.
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Table 6. OLS and LASSO Regressions, Contd.

OLS OLS LASSO LASSO
Top-Load Front-Load Top-Load Front-Load

Feature Est. s.e. Est. s.e. Est. s.e. Est. s.e.

Sanitize Heat -13.72 -1.41 0.18 0.23
Sanitize Silver Ion 0.64 0.53 0.76 1.02
Sanitize Steam Technology 0.78 1.39 0.41 0.97
Spin Time Option 0.34 0.14 0.10 0.07
Smooth Balance 1.19 1.31 -0.09 -0.14 0.50 0.66 -0.36 -0.76
Smooth Noise -9.14 -1.99 0.88 0.47 -1.27 -1.18
Smooth Suspension 2.45 0.89 0.14 0.19 0.30 0.51
Soil Level Selector 2.23 2.47 4.05 5.45 1.64 2.17 3.32 5.95
Soil Level Sensor 2.96 2.71 0.95 0.70 2.96 4.48
Special Door Access -0.31 -0.10 0.29 0.25
Spin Speed Option -0.26 -0.48 1.18 1.48 0.98 1.47
Stainless Tub 3.23 0.87 -0.25 -0.39 0.00 -0.01
Temperature Selection -2.47 -0.75 -0.23 -0.04 -2.77 -1.22 -3.94 -1.47
Temperature Sensor 0.76 1.55 -1.82 -2.00 -1.48 -2.54
Water Level Selector -1.21 -0.75 1.53 0.73 -0.44 -0.74
Water Level Sensor -0.82 -0.47 -0.21 -0.11
Water Saving Technology 3.37 1.53 0.92 0.63
Brand: Samsung -9.73 -3.60 -5.98 -4.56
Brand: Whirlpool 0.61 0.83 -3.13 -1.09 0.28 0.52 0.61 1.21
Brand: Estate 0.59 0.63
Brand: Bosh -3.26 -1.07
Brand: LG -14.43 -1.35 -7.65 -3.66 -4.43 -4.34
Brand: GE 0.94 1.34 -5.61 -2.42 0.80 1.48 -2.89 -3.87
Brand: Frigidaire 1.03 1.35 -3.69 -1.70 0.73 1.18 -1.12 -1.71
Brand: Roper -1.08 -1.24 -1.36 -1.83
Brand: Maytag 1.23 1.60 -3.43 -1.25 0.97 1.74

Notes: The t-statistic that rejects the null hypothesis (the coe�cient is not di�erent than
zero) at the 5% level takes a value of +/≠1.97. All t-stats greater than |1.97| identifies
coe�cients significant at the 5% level.
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Table 7. Change in Quality: LASSO Index

Dep. Variable: First-Di� First-Di�
log(price) w. Matching
Revision Non-ES �QI t-stat �QI t-stat
Event vs. ES

Price-Adjusted Quality Index: Predicted LASSO
CW: MES 01/2004 Non-ES 3.36 8.18 3.45 8.30

ES 2.04 3.12 2.55 3.32
CW: MES 01/2007 Non-ES 2.97 6.54 2.94 5.71

ES 2.07 4.55 1.56 2.71
CW: ES 01/2009 ES 3.65 3.18 3.85 2.59
EE-Price-Adjusted Quality Index: Predicted LASSO
CW: MES 01/2004 Non-ES 0.33 1.39 0.43 1.78

ES 0.09 0.24 0.31 0.68
CW: MES 01/2007 Non-ES 1.65 6.27 1.74 5.76

ES 1.21 4.60 1.21 3.59
CW: ES 01/2009 ES 1.77 2.64 2.17 2.49
Size-EE-Price-Adjusted Quality Index: Predicted LASSO
CW: MES 01/2004 Non-ES 0.30 1.30 0.29 1.26

ES 0.19 0.52 0.21 0.49
CW: MES 01/2007 Non-ES -0.19 -0.76 -0.10 -0.34

ES -1.13 -4.41 -1.28 -3.99
CW: ES 01/2009 ES -1.33 -2.06 1.26 1.52
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Appendix A. Additional Details: Policy Background
Appliance Market

This appendix provides detailed information about the minimum e�ciency standards and ES stan-
dards for the di�erent appliance categories covered in our empirical analysis. Although we distin-
guish explicitly among six di�erent categories, in the regulatory process some of these categories
are grouped together and are considered di�erent product classes that belong to a broader category.
For instance, this is the case for compact refrigerators, freezers, and full-size refrigerators.

Clothes Washers: The standards for clothes washers e�ective in 1994 were based on the en-
ergy factor (EF), which was a measure of cubic feet of capacity per kwh per cycle, and included
energy consumed by the washer directly, as well as the energy required to heat the water. The
standard e�ective in 1994 only applied to top-load washing machines. The next standards, which
were adopted in 2001, became e�ective in a two tier process in 2004 and 2007. These standards were
based on the modified energy factor (MEF), which expanded upon the EF by also incorporating
a measure of the energy necessary to dry the clothes at the completion of the wash cycle. This
captured the fact that washers that were more e�ective at spinning moisture out of the clothing
were more energy e�cient because the clothing required less energy to be dried thereafter. The
standards that rolled out in 2004 and 2007 were applied to both top-load and front-load washers,
and while these di�erent configurations were recognized in the rulemaking analysis, the level of
the standard established based on the MEF did not di�er between these two product types. The
clothes washer standard e�ective in 2011 was based on the MEF as described above, but was now
also based on the water factor (WF), which captured the water use of the washer. The standard
levels set for clothes washers vary based on the size of the washer: compact (less than 1.6 cubic
feet) versus standard size washers. There have also been elements of technology-based standards
for clothes washers. In particular, NAECA required that, e�ective in 1988, clothes washers must
be manufactured with an unheated rinse option.

Dishwashers: The standard for dishwashers e�ective in 1994 was based on the energy factor
(EF) for dishwashers, which was a measure of cycles per kWh. The second NAECA standard for
dishwashers was delayed by the Process Rule.35 Once the next revisions of the dishwasher standard

35The “Process Rule” refers to the 1995-96 Department of Energy (DOE) review of the process for de-
veloping appliance standards, which resulted in the suspension of several rulemakings (“Procedures for
Consideration of New or Revised Energy Conservation Standards for Consumer Products,” 61 FR 36974
(July 15, 1996) 10 CFR 430 Appendix A to Subpart C, or the “Process Rule”).
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came around (prompted by EISA in 2007), the metric changed for the standard e�ective in 2010 to
that of kWh per year. The standard e�ective for dishwashers in 2013 was the result of a direct final
rule as part of the Joint Petition agreement.36 The product classes by which standard levels are
di�erentially set for dishwashers are also based on size: compact versus standard sized dishwashers.

Room Air Conditioners: The metric by which the standards have been set for room air con-
ditioners is the energy e�ciency ratio (EER), which is a measure of cooling capacity (in Btus per
hour) by electric input power (in watts). The second room air conditioner standard was similarly
delayed by the Process Rule (see dishwashers above). The product classes for room air conditioners
are based on capacity (in Btus per hour); whether or not the air conditioner has louvered sides;
whether it is “reverse cycle,” or has a heating cycle; and whether it is intended for window versus
wall installation. The standard for room air conditioners e�ective in 2014 was also a part of the
Joint Petition agreement (see dishwashers, above).

Refrigerators/Freezers: The standards for refrigerators and freezers e�ective in 1990 were not
directly linked to the size of the unit, the standards thereafter were set as a function of the adjusted
volume (AV), in cubic feet, of the unit. The metric the standards are based on is kWh per year,
but the level of the standard cuto� for di�erent units varies based on the AV. Refrigerators and
freezers have by far the most separate product classes of all the appliances covered by standards.
They are di�erentiated based on size (compact versus standard); freezers with manual versus auto-
matic defrost; the mounting orientation of combined refrigerator-freezers (top-mount, side-by-side,
or bottom-mount freezers); standalone freezers that are upright versus chest; and top-mount and
side-by-side with and without through the door (TTD) ice dispensing. For example, all told the
standard e�ective in 2001 had 18 separate product classes for refrigerators and freezers, with two
more added in 2005 following a petition by stakeholders. The standard levels for all of these product
classes then varied by AV.

Appendix B. Clustering Analysis and Nested Logit Estimation

For the nested logit estimation, we determine the nest structure for each appliance category, by
performing a clustering analysis on a subset of observed product characteristics. The algorithm

36“Agreement on Minimum Federal E�ciency Standards, Smart Appliances, Federal Incentives and Re-
lated Matters for Specified Appliances” (the “Joint Petition” or “Consensus Agreement”).
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that we use is a k-means clustering analysis (Hastie, Tibshirani, and Friedman 2009) implemented
in Stata with the command “cluster kmeans.” A k-means clustering analysis consists of partitioning
J observations, each described by a vector x of size K, which in our case consists of J products
with K attributes, into G sets S = {S1, S2, ..., SG} by minimizing a within-cluster mean square
error (MSE):

arg min
S

Gÿ

g=1

ÿ

xœSg

Îx ≠ xgÎ2

where xg represents the mean of the observations portioned in the set Sg. The algorithm takes as
input the number of sets G and the K dimensions of the vector describing each observation. For
each appliance category, we select the number of clusters, G, using the so-called “hockey stick”
criteria. We computed 8 iteratively for di�erent values of G and plotted the objective function as
a function of G. As shown in Figure B.1, the function 8 drops sharply for low values of G and
stabilizes at a kick point, which mimics the shape of a “hockey stick.” The heuristic is to use G

that corresponds to the kick point. Across all appliance categories, a value of G = 5 tends to be
the most appropriate.

The K product attributes that we use for each appliance category were selected using a qual-
itative process. We identified the most prominent attributes and focused on attributes related to
energy e�ciency. Table B.1 lists the various attributes used for each appliance category.
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(b) Dishwashers
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(c) Room ACs
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(d) Freezers
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(e) Compact Refrigerators
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(f) Full-Size Refrigerators

Figure B.1. Clustering Analysis: MSE versus # of Clusters
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Table B.1. Product Attributes for K-means Clustering Analysis

Attributes Selected for K-means
Clustering Analysis

Clothes Washers price, capacity, electricity consumption,
ES-certification, front-load versus
top-load

Dishwashers price, capacity, electricity consumption,
ES-certification, built-in versus other

Room Air Conditionners price, capacity, energy e�ciency ratio,
ES-certification, built-in versus other

Freezers price, capacity, electricity consumption,
ES-certification, upright versus chest
freezer

Compact Refrigerators price, capacity, electricity consumption,
ES-certification, top-freezer versus other

Full-Size Refrigerators price, capacity, electricity consumption,
ES-certification, top-freezer,
bottom-freezer or side-by-side
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Appendix C. Sensitivity Tests

This Appendix shows the price-adjusted quality index estimated using di�erent specifications and
modeling assumptions. Overall, the results are similar to clothes washers presented in the main
text. Controlling for product age tends to have the greater impact on the quality indexes. Note that
when we do not control for product age, the quality index for some appliance category (freezers,
compact and full-size refrigerators) displays large discrete jumps that are not coordinated with a
standard revision event (Figure 2). These jumps are an artifact of the data collection technique of
the NPD Group. From year to year, NPD may change the set of models that it is tracking and the
retailers it is working with. In the present case, the fact that the discrete jumps occurred exactly
at the beginning of a calendar year where we observe a large number of new models entering the
sample suggests a change in the collection of the panel data. Qualitatively, controlling for product
age is particularly important for dishwashers. Without product age, the 2007 revision in the ES
standard suggests a large increase in quality, but we observe a large decrease once we account for
product age.

Similarly to clothes washers, for all five appliance categories, the e�ect of calibrating the coef-
ficient on price is rather inconsequential. Only for full-size refrigerators, we observe a large and
statistically significant di�erence on the quality index for di�erent values of the parameter ÷. Qual-
itatively, the conclusion is the same, though. On average, the price-adjusted quality of full-size
refrigerators has increased during the 2001-2011 period.

The controls for unobserved horizontal product di�erentiation have little e�ect for all appliance
categories, which also mirrors the results for clothes washers. The only exception is for dishwash-
ers in the post-2007 period, where the indexes computed under the logit assumption are larger
and statistically di�erent than the index computed with a nested logit and distance function as a
control. If we increase the number of nests from 5 to 28, we have a richer control for unobserved
horizontal product di�erentiation and the index becomes smaller. For this appliance category, dur-
ing that particular time period, the e�ect of horizontal product di�erentiation was thus important
empirically.

Finally, the sales-weighted quality indexes tend to display more month-to-month variability and
display a slightly larger rate of increase relative to the model-weighted indexes. The overall patterns
are, however, the same.



58

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Price Elasticity=−2.25

Price Elasticity=−0.25

Price Elasticity=−3.75

Avg. Price

3
6

0
3

8
0

4
0

0
4

2
0

4
4

0
4

6
0

A
ve

ra
g

e
 P

ri
ce

 (
2

0
1

1
 $

)

(a) Marginal Utility of Income

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Control for Product Age

No Control for Product Age

(b) Product Age

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Nested Logit 5 Nests

Nested Logit 28 Nests

Logit

(c) Nested Logit Structure

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Model−Weigthed

Sales−Weighted

(d) Sales vs. Model Weighted

Figure C.1. Sensitivity Tests: Dishwashers

.



59

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m4 2003m4 2005m10 2008m4 2010m10

Preferred: Price Elasticity=−2.25

Price Elasticity=−0.25

Price Elasticity=−3.75

Avg. Price 1
5

0
2

0
0

2
5

0
3

0
0

A
ve

ra
g

e
 P

ri
ce

 (
2

0
1

1
 $

)

(a) Marginal Utility of Income

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m4 2003m4 2005m10 2008m4 2010m10

Preferred: Control for Product Age

No Control for Product Age

(b) Product Age

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m4 2003m4 2005m10 2008m4 2010m10

Preferred: Nested Logit 5 Nests

Nested Logit 28 Nests

Logit

(c) Nested Logit Structure

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m4 2003m4 2005m10 2008m4 2010m10

Preferred: Model−Weigthed

Sales−Weighted

(d) Sales vs. Model Weighted

Figure C.2. Sensitivity Tests: Room ACs

.



60

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Price Elasticity=−2.25

Price Elasticity=−0.25

Price Elasticity=−3.75

Avg. Price

2
5

0
3

0
0

3
5

0
4

0
0

A
ve

ra
g

e
 P

ri
ce

 (
2

0
1

1
 $

)

(a) Marginal Utility of Income

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Control for Product Age

No Control for Product Age

(b) Product Age

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Nested Logit 5 Nests

Nested Logit 28 Nests

Logit

(c) Nested Logit Structure

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Model−Weigthed

Sales−Weighted

(d) Sales vs. Model Weighted

Figure C.3. Sensitivity Tests: Freezers

.



61

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Price Elasticity=−2.25

Price Elasticity=−0.25

Price Elasticity=−3.75

Avg. Price

1
2

0
1

6
0

2
0

0
2

4
0

A
ve

ra
g

e
 P

ri
ce

 (
2

0
1

1
 $

)

(a) Marginal Utility of Income

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Control for Product Age

No Control for Product Age

(b) Product Age

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
2

4
6

8
1

0

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Nested Logit 5 Nests

Nested Logit 28 Nests

Logit

(c) Nested Logit Structure

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Model−Weigthed

Sales−Weighted

(d) Sales vs. Model Weighted

Figure C.4. Sensitivity Tests: Compact Refrigerators

.



62

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Price Elasticity=−2.25

Price Elasticity=−0.25

Price Elasticity=−3.75

Avg. Price 7
0

0
8

0
0

9
0

0
1

0
0

0
1

1
0

0

A
ve

ra
g

e
 P

ri
ce

 (
2

0
1

1
 $

)

(a) Marginal Utility of Income

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Control for Product Age

No Control for Product Age

(b) Product Age

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Nested Logit 5 Nests

Nested Logit 28 Nests

Logit

(c) Nested Logit Structure

Month of the Year

Q
u

a
lit

y 
In

d
e
x

0
5

1
0

1
5

2001m1 2003m7 2006m1 2008m7 2011m1

Preferred: Model−Weigthed

Sales−Weighted

(d) Sales vs. Model Weighted

Figure C.5. Sensitivity Tests: Full-Size Refrigerators

.



63

Table C.1. Change in Price-Adjusted Quality:
High Marginal Utility of Income |÷| = 0.0005

Dep. Variable: First-Di� Di�-in-Di� First-Di� Di�-in-Di�
Price-Adjusted Quality Index w. Matching w. Matching
Revision Non-ES �QI t-stat �QI t-stat �QI t-stat �QI t-stat
Event vs. ES

CW: MES 01/2004 Non-ES 1.18 4.63 0.81 3.39 0.81 2.90 0.39 1.50
ES 2.11 7.68 1.73 6.68 1.69 4.44 1.24 3.57

CW: MES 01/2007 Non-ES 2.65 10.44 2.58 11.04 2.37 7.64 2.50 8.96
ES 2.47 8.16 2.51 9.03 1.63 4.15 1.79 5.07

DW: MES 01/2010 Non-ES 0.92 2.85 0.44 1.47 0.80 2.18 0.43 1.31
ES -0.11 -0.20 -0.53 -0.99 0.15 0.23 -0.46 -0.78

CW: ES 01/2009 ES 4.06 5.28 3.81 5.44 4.40 4.32 4.27 4.67
DW: ES 01/2007 ES 0.15 0.54 0.21 0.83 0.19 0.62 0.00 0.00
DW: ES 01/2009 ES 1.28 4.93 0.90 3.76 0.61 2.01 0.97 3.51
REF: ES 01/2004 ES 0.14 0.37 -0.15 -0.42 0.10 0.21 -0.24 -0.57
REF: ES 04/2008 ES 1.28 7.80 1.11 7.38 1.38 7.72 1.31 8.09
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes
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Table C.2. Change in Price-Adjusted Quality: Low Marginal Utility of In-
come |÷| = 0.0075

Dep. Variable: First-Di� Di�-in-Di� First-Di� Di�-in-Di�
Price-Adjusted Quality Index w. Matching w. Matching
Revision Non-ES �QI t-stat �QI t-stat �QI t-stat �QI t-stat
Event vs. ES

CW: MES 01/2004 Non-ES 0.46 1.09 0.17 0.43 0.05 0.11 -0.34 -0.91
ES 2.88 6.27 2.59 6.04 1.27 2.27 0.87 1.71

CW: MES 01/2007 Non-ES 4.24 9.98 3.86 10.03 4.17 9.09 4.18 10.28
ES 4.32 8.53 4.17 9.10 2.84 4.88 2.88 5.59

DW: MES 01/2010 Non-ES 1.37 2.54 0.50 1.02 1.22 2.25 0.37 0.76
ES -2.29 -2.35 -3.05 -3.48 0.06 0.06 -1.24 -1.46

CW: ES 01/2009 ES 6.22 4.84 5.69 4.93 5.28 3.50 5.07 3.80
DW: ES 01/2007 ES 0.85 1.84 0.63 1.50 0.58 1.27 -0.05 -0.12
DW: ES 01/2009 ES 2.45 5.67 1.70 4.32 0.88 1.97 1.56 3.88
REF: ES 01/2004 ES 0.61 0.93 0.37 0.62 0.18 0.27 -0.13 -0.21
REF: ES 04/2008 ES 2.66 9.72 2.27 9.18 2.85 10.79 2.62 11.11
Appliance Type FE Yes Yes Yes Yes
Product Line FE No No Yes Yes
Year FE No Yes No Yes
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Table C.3. Interpretation of Changes in Price-Adjusted Quality: Money Metric

Revision Non-ES First-Di� Di�-in-Di� First-Di� Di�-in-Di�
Event vs. ES w. Matching w. Matching
Preferred: Marginal Utility Income |÷|=0.0045, elasticity=-2.25

CW: MES 01/2004 Non-ES 290 214 198 104
ES 673 595 449 350

CW: MES 01/2007 Non-ES 732 677 686 703
ES 736 721 463 488

DW: MES 01/2010 Non-ES 260 108 233 91
ES -297 -428 19 -201

CW: ES 01/2009 ES 1117 1028 1087 1045
DW: ES 01/2007 ES 116 95 89 -9
DW: ES 01/2009 ES 432 298 172 289
REF: ES 01/2004 ES 101 40 42 -32
REF: ES 04/2008 ES 447 384 482 445
Low Marginal Utility Income |÷|=0.0075, elasticity=-3.75

CW: MES 01/2004 Non-ES 62 23 6 -46
ES 384 345 170 115

CW: MES 01/2007 Non-ES 565 515 556 558
ES 576 556 378 384

DW: MES 01/2010 Non-ES 182 67 163 49
ES -305 -407 8 -165

CW: ES 01/2009 ES 830 759 704 676
DW: ES 01/2007 ES 113 84 78 -6
DW: ES 01/2009 ES 327 227 118 208
REF: ES 01/2004 ES 82 49 25 -17
REF: ES 04/2008 ES 354 303 381 349
High Marginal Utility Income |÷|=0.0005, elasticity=-0.25

CW: MES 01/2004 Non-ES 2353 1626 1622 776
ES 4225 3468 3372 2483

CW: MES 01/2007 Non-ES 5304 5157 4738 5001
ES 4949 5021 3255 3581

DW: MES 01/2010 Non-ES 1838 874 1595 864
ES -228 -1052 296 -913

CW: ES 01/2009 ES 8112 7621 8799 8534
DW: ES 01/2007 ES 297 422 388 -1
DW: ES 01/2009 ES 2556 1798 1223 1934
REF: ES 01/2004 ES 288 -301 191 -477
REF: ES 04/2008 ES 2555 2216 2758 2618
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Appendix D. Entering and Exiting Models
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Figure D.1. Entering and Exiting Clothes Washer Models: 2004-2008

.
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Appendix E. Additional Results: Room Air Conditioners with Re-
verse Cycle

Room air conditioners with reverse cycle technology are commonly called heat pumps. They pro-
vide both heating and cooling. Prior 2005, this technology was covered by the ENERGY STAR
certification. In our sample, we observe a relatively small number of room ACs with this technology.
The analysis below was conducted on 119 models.
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.



68

Appendix F. LASSO Approach and Detailed Product Attributes:
Clothes Washers

We implemented the LASSO estimation with the Post-LASSO algorithm. This is a two-stage esti-
mation. First, we ran a LASSO regression using the price-adjusted quality indexes (estimated fixed
e�ects) as the dependent variable. We used the whole vector of product attributes as regressors.
We ran separate LASSO regressions for top-load and front-load models. We made this modeling
decision after interacting the attributes with a dummy for front-load versus top-load. The model
with the interaction terms shown that the dummy was not selected by the LASSO algorithm. The
LASSO regressions selected a subset of attributes, others had a coe�cient set to zero. The goal
of the second step is to recover standard errors. The subset of product attributes selected by the
LASSO regression are then regressed on the quality indexes with a simple OLS and the standard
errors are computed.
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Table F.1. Attributes of Clothes Washers

Attribute Description Coding EE-Related Subject to
Trademark

kWh/y Yearly Electricity Consumption
Reported by Manufacturers to FTC

Continuous Yes

Size (Cu. Ft.) Overall Capacity Continuous
# Cycles Number of washing cycles Continuous
ES-certified ENERGY STAR certified 0-1 Dummy
NSF Certified National Sanitation Foundation

(NSF) certified
0-1 Dummy

Brand Brand dummies for Maytag, Roper,
Samsung, Whirlpool, Bosch, Estate,
Frigidaire, GE, and LG

0-1 Dummy

Remote Laundry Monitoring 0-1 Dummy
Add a Garnment 0-1 Dummy Yes
Clean Action 0-1 Dummy
Electronic Control 0-1 Dummy
Programmable Control 0-1 Dummy Yes
Cycle Status End Signal 0-1 Dummy Yes
Cycle Status Remaining Time 0-1 Dummy Yes
Cycle Status Lights 0-1 Dummy Yes
Delay Start 0-1 Dummy
Bleach Dispenser 0-1 Dummy
Detergent Dispenser 0-1 Dummy
Fabric Softener Dispenser 0-1 Dummy
Injection Dispenser 0-1 Dummy Yes Yes
Other Dispenser 0-1 Dummy Yes
Special Door Access 0-1 Dummy
Dryer Ready 0-1 Dummy
Heater 0-1 Dummy Yes Yes
Water Level Selector 0-1 Dummy Yes Yes
Water Level Sensor 0-1 Dummy Yes
Water Saving Technology 0-1 Dummy Yes
Advanced Motor Features 0-1 Dummy Yes
Extra Rinse 0-1 Dummy
Sanitize Heat 0-1 Dummy Yes
Sanitize Silver Ion 0-1 Dummy
Sanitize Steam Technology 0-1 Dummy
Sanitize Cycle 0-1 Dummy
Smooth Balance 0-1 Dummy
Smooth Suspension 0-1 Dummy
Smooth Suspension 0-1 Dummy
Soil Level Selector 0-1 Dummy Yes
Soil Level Sensor 0-1 Dummy Yes
Maximum Spin Speed 0-1 Dummy Yes Yes
Spin Speed Option 0-1 Dummy
Spin Timer Option 0-1 Dummy
Cold Temperature Default 0-1 Dummy Yes
Temperature Selection 0-1 Dummy Yes Yes
Temperature Sensor 0-1 Dummy Yes
Automatic Timer 0-1 Dummy Yes
Quickwash 0-1 Dummy Yes Yes
Other Features Tub 0-1 Dummy
Stainless Tub 0-1 Dummy Yes


