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Abstract 

Several recent demonstrations and pilots have shown that air conditioner (AC) electric loads can 
be controlled during the summer cooling season to provide ancillary services and improve the 
stability and reliability of the electricity grid.   A key issue for integration of air conditioner load 
control into grid operations is how to accurately measure shorter-term (e.g., ten’s of minutes to a 
couple of hours) demand reductions from AC load curtailments for operations and settlement.  
This report presents a framework for assessing the accuracy of shorter-term AC load control 
demand reduction measurements.  It also compares the accuracy of various alternatives for 
measuring AC reductions – including methods that rely on regression analysis, load matching 
and control groups – using feeder data, household data and AC end-use data.  A practical 
approach is recommended for settlement that relies on set of tables, updated annually, with pre-
calculated load reduction estimates.  The tables allow users to look up the demand reduction per 
device based on the daily maximum temperature, geographic region and hour of day and 
simplify the settlement process.     
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Executive Summary 

Historically, air conditioner (AC) direct load control programs have been used for emergency 
operations and to offset the need to build additional peak generation.  Their use for day-to-day 
electric system operations has been limited.  However, several recent demonstrations and pilots 
have shown that AC loads can be used during the summer cooling season to improve the stability 
and reliability of the electricity grid by providing ancillary services.  On average, they noticeably 
start reducing demand within 60 seconds and typically reach full capability in less than 5 
minutes.  AC demand and, by connection, demand reduction capability is also typically higher 
when electricity system needs are higher.  Many load reduction control devices also have the 
ability to shed load automatically when frequency fluctuations are detected and do not require 
instruction from a central location, providing a safeguard.  Importantly, AC loads can be 
curtailed for short duration periods relatively frequently without affecting customer comfort.  
 
A key issue for grid operations and electricity market settlement is how to accurately measure 
shorter-term (e.g., ten’s of minutes to a couple of hours) demand reductions from AC load 
curtailments for operations and settlement.1  Importantly, measurements for settlement and 
operations need to be conducted quickly (in real time or on a monthly basis), much faster than 
traditional program evaluations, which are conducted on an annual basis.  In addition, measuring 
demand reductions, sometimes referred to as negawatts, is an entirely different task than 
measuring power production.  While power production is directly measured, by necessity, the 
measurement of AC curtailments is an indirect estimate.  The curtailment is calculated as the 
difference between electricity use with and without the AC curtailment.  However, it is not 
possible to directly observe what customers would have used in the absence of AC curtailment.  
To calculate the resource delivered, participant's load patterns in the absence of program 
participation – the counterfactual, sometimes referred to as the baseline – must be estimated.  In 
doing so, it is important to systematically eliminate or control for alternative explanations for the 
change in electricity consumption.  There are a variety of approaches for measuring the 
magnitude of AC curtailments with different degrees of complexity, data sources and metering 
requirements.   
 
This report presents a framework for assessing the accuracy of shorter-term AC load control 
demand reduction measurements and compares the accuracy of various alternatives for 
measuring AC reductions using three types of data sources, including feeder data, household data 
and AC end-use data.  The framework essentially tests if the different measurement alternatives 
correctly calculate demand reductions under different conditions.  The study relies on a realistic 
simulation of AC load curtailments because with a simulation, the real answers are known, 
making it possible to assess if the measurement is correct and, if not, by how much it deviates 
from the known AC curtailment. 
 
In total, we tested 10 calculation methods using feeder data, household data and end-use AC 
data.  Each combination of data source and calculation method is considered as a separate 
measurement alternative.  The calculation methods tested include both within- and between 
                                                 
1 Throughout this report the term “accuracy” refers to both a lack of bias in the measurement and the goodness-of-fit of 
measurements.  For clarity, the metrics to assess accuracy are separated into measures of bias (or lack thereof), goodness-of-fit 
and variability.  
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subject estimators.  Within-subject estimators use customer’s electricity use patterns during days 
when AC units are not curtailed to estimate AC load absent curtailment operations during actual 
event days.  Between-subject estimators rely on an external control group of AC units that is not 
curtailed to provide information about electricity use absent curtailment.  
 
While highly accurate results are desirable, there is often a tradeoff between simplicity and 
incremental accuracy.  In order to help gauge the benefit of more complex and costly 
approaches, each of the measurement alternatives are compared with one of the simplest and 
least technical approaches – a set of tables with pre-calculated load reduction estimates.  The 
tables allow users to look up the demand reduction per device based on the daily maximum 
temperature, geographic region and hour of day.  They facilitate quick settlement when resources 
are dispatched and provide operators a quick estimate of the DR resources available 
for operations.     
 
Key findings from the study include: 

 AC impact tables, on average, provide accurate estimates of AC load reductions over 
multiple events.  With a sample of 1,000 accounts, over the course of 15 events, the 
tables calculate impacts with ±4.5% accuracy with 95% confidence because measurement 
errors for individual event days cancel each other out.  However, for individual 
curtailments the estimates are less precise. 

 Demand reduction measurements for direct load control programs are the least accurate 
with feeder data and are unreliable for individual curtailment events.  Except in feeders 
with extreme levels of program penetration, AC curtailments tend to be a small share of 
the feeder load and difficult to accurately distinguish from normal variation in feeder 
loads – noise.  Feeder data includes demand from numerous end-uses and customers that 
are not enrolled in the load control program.  As a result, both the controllable AC load 
and the demand reductions tend to be a small share of overall feeder demand, making it 
difficult to accurately identify the demand reductions from the inherent variation in 
feeder demand levels.  Overall, feeder load produces demand reduction estimates that are 
magnitudes in order less accurate than simple tables.   

 Of all 10 calculation methods tested, the 10-in-10 baseline with a 20% in-day adjustment 
cap is the least accurate.  This method is the default approach for estimating impacts for 
settlement in the California ISO.  While it may be adequate for large industrial customers, 
it does not produce accurate impacts for highly weather sensitive AC load curtailments. 

 Regressions produce substantially more accurate AC demand reduction estimates than 
day-matching or weather-matching baselines, particularly for individual event days.  
Among baseline methods the weather-adjusted baseline is the most accurate approach for 
measuring AC demand reductions.  However, each of the regression models tested 
outperformed all of the day or weather-matching baselines regardless of data source.  
Simply put, regression provides more accurate results than day or weather-matching 
baselines.  

 Because AC control programs typically control a large number of AC units, often well 
over 100,000 units to be practical, measurements are based on samples.  In practice, 
measurements using smart meter household data produce the most accurate demand 
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reduction results because they can rely on far larger samples of program households.  
Smart meters lower the cost of using large scale samples and implementing large scale 
random assignment of curtailment operations.  If sample sizes are equal, measurements 
that rely on directly metered AC end-use data provide the most accurate impacts.  
However, in practice, sample sizes with smart meter data can be far larger than sample 
sizes of AC end use data at lower costs. 

 With calculation methods that rely on a control group, a simple technique known as 
difference-in-differences produces more accurate results than simple comparison 
of means. 

The fact that relatively accurate estimates can be obtained using static tables of demand 
reduction estimates raises several questions.  Is it really necessary to use more complex 
calculations for each individual AC curtailment event?  How much value does the incremental 
accuracy of more complex calculation provide for operations and settlement?  
 
A practical approach is recommended for settlement.  It involves using tables with pre-calculated 
load reductions per AC unit to estimate demand reductions over the summer; conducting a more 
detailed evaluation at the end of the summer to reconcile settlements and updating the demand 
reduction tables on an annual basis using a transparent process that allows for independent 
verification by a third party.  As the measurement uncertainty in annual evaluations improves 
and the number of AC load operations increases, the accuracy of the tables is expected to 
increase.    
 
While tables with pre-calculated load reductions per AC unit provide accurate estimates of 
demand reductions over course of the summer, they currently lack the precision needed for grid 
operations.  However, with better measurement in annual AC program evaluations, it may be 
possible to refine the tables enough to utilize them for operations.  
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1. Introduction 

Historically, air conditioner direct load control programs have been used to offset the need to 
build additional peak generation.  Over the past few years several conceptual and demonstration 
studies have been conducted that identified and tested the potential of using air conditioner (AC) 
load control to help improve the stability and reliability of the electricity grid by responding 
quickly to stabilize the grid. 2345  In addition, several utilities have explored expanding AC load 
control operations to alleviate transmission constraints or as a way to defer or avoid transmission 
and distribution equipment upgrades.  AC loads can provide the ability to quickly recover from 
system shocks such as transmission of generation forced outages by removing demand for power 
from the system.  Though less tested, in theory, AC loads can also be configured to increase and 
decrease in order to regulate the balance of the electric grid.  They also can aid the ability of 
operators to adjust to an unexpectedly fast ramping of system loads. 

 
The demonstration studies confirmed that: 

 AC loads can be curtailed quickly and often times respond more quickly than generation.  
AC units begin to noticeably shut down or cycle compressors within 60 seconds of when 
the load control signal is sent out and ramp up to the full load reduction capability within 
less than six minutes.  

 Short term AC curtailments have a negligible effect on customer comfort. 

 Curtailments can be observed on near real time basis using samples and that the 
curtailments observed in the sample are matched by fluctuation in feeder loads. 

In part because of these demonstration studies, electricity markets have begun to develop 
products to allow AC load control programs to participate in ancillary services; and internal 
utility operations teams have expanded exploring how AC load control can be used in grid 
operations.  However, several issues need to be addressed to fully integrate AC load control into 
electricity markets and operations that have traditionally been reserved for generators.  
These include: 

 How to accurately measure the demand reductions provided by AC load curtailments; 

 How to forecast and bid the available resources; 

 How to observe and confirm AC load reduction activation in near real-time; 

                                                 
2 Eto, J.,  Nelson-Hoffman, C. Torres, S. Hirth, B. Yinger, J. Kueck, B. Kirby (Oak Ridge National Laboratory), C. Bernier, R. 
Wright, A. Barat, D. Watson.  2007.  Demand Response Spinning Reserve Demonstration. Ernest Orlando Lawrence Berkeley 
National Laboratory.  LBNL-62761. 
 
3 Eto, J., C. Bernier, P. Young, D. Sheehan, J. Kueck, B. Kirby, J. Nelson-Hoffman, and E. Parker (2009).  Demand Response 
Spinning Reserve Demonstration — Phase 2 Findings from the Summer of 2008. Ernest Orlando Lawrence Berkeley National 
Laboratory.  LBNL-2490E.  
 
4 Gifford, W., S. Bodmann, P. Young, J. Eto, J. Laundergan. 2010.  Customer Impact Evaluation for the 2009 Southern 
California Edison Participating Load Pilot.  Lawrence Berkeley National Laboratory.  LBNL-3550E.   
 
5 Sullivan, M., J. Bode, P. Mangasarian. 2009.  2009 Pacific Gas and Electric Company SmartAC Ancillary Services Pilot.  
Prepared for Pacific Gas and Electric. 
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 Automating processes for delivering the specific amount of resources requested by 
operators by optimizing the dispatch strategy; and 

 Developing clearly defined dispatch rules that balance extracting value from DR against 
exhausting it prematurely. 

This report focuses on how to accurately measure shorter-term (ten’s of minutes to a couple of 
hours) demand reductions from AC load curtailments for settlement and operations.  It also 
compares the costs for different measurement alternatives and potential data sources for 
settlement.  The measurements of AC curtailments not only need to be accurate, but also need to 
be produced quickly.  Measuring demand reductions, sometimes referred to as negawatts, is an 
entirely different task than measuring power production.  With generation, electricity output is 
measured directly.  In contrast, the measurement of demand reductions is indirect.  It is not 
possible to directly observe what customers would have used in the absence of a demand 
reduction event.  To calculate the resource delivered, participant's load patterns in the absence of 
program participation – the counterfactual or baseline – must be estimated.  In doing so, it is 
important to systematically eliminate or control for alternative explanations for the change in 
electricity consumption.  
 
The fact that it is impossible to directly observe what customers would have used in the absence 
of load control poses a unique challenge for assessing the accuracy of impact estimates.  To 
assess accuracy it is necessary to know the “true” demand reductions that were delivered.  If they 
are known, it is possible to test which combination of estimation method and data sources 
produces the correct or most accurate answer.  To assess accuracy of different alternatives for 
estimating AC demand reductions, the study relies on a realistic simulation of AC load 
curtailments on actual feeder, household and AC end-use data.  A simulation is useful precisely 
because the real answers are known, making it possible to compare estimates from various 
alternatives to the simulated demand reduction. 
 
This report presents a framework for assessing accuracy of AC curtailments.  It also 
systematically analyzes how the use of feeder, household data and AC end-use data affects the 
accuracy of the measurement of AC demand reductions.  In addition, it compares the accuracy of 
11 methods for estimating AC curtailments, including the standard baseline method adopted by 
the California Independent System Operator (CAISO).  One of the simplest and least technical 
approaches – a set of tables that provides estimates of the load curtailment based on daily 
maximum temperature, region and hour of day – is used as a benchmark to assess the extent to 
which more complex approaches for estimating AC curtailments improve accuracy.  This basic 
approach is compared against eight within-subject and two between-subject estimation methods 
that rely on random assignment of control operations.  Within-subject estimators use customer’s 
electricity use patterns during days when AC units are not curtailed to estimate AC load absent 
curtailment operations during actual event days.  They work because the AC curtailment is 
introduced on some days and not on others, making it possible to observe behavior with and 
without the load control in effect.  Between-subject estimators rely on an external control group 
of AC units that are not curtailed to provide information about AC units that were curtailed and 
would have used electricity if they were not instructed to shed load. 
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While the analysis of AC measurement accuracy relies on data from California, the findings 
apply more broadly to the measurement of AC curtailments for operations and settlement in any 
electricity market and for program evaluation in general. 
 
The report is structured as follows.  Section 2 provides the market context and summarizes prior 
research regarding using AC curtailments to provide spinning reserves and accuracy of different 
settlement methods for DR.  Section 3 presents the framework for assessing accuracy of different 
options for estimating AC curtailments.  The accuracy metrics and results for each of the 
settlement alternatives tested are presented in Section 4.  Section 5 assesses the costs of different 
settlement options and presents a framework for settlement that relies of pre-calculated tables 
with load reductions per AC unit under various conditions.
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2. Context and Prior Research 

Air conditioner (AC) cycling is a resource with significant potential for improving the stability 
and reliability of the electricity grid.  The stability and reliability of electricity supply systems 
depends critically on the ability to balance supply and demand virtually instantaneously at all 
times.  Delays in balancing supply and demand can lead to frequency and voltage fluctuations 
that compromise the reliability of the electricity grid, often times across multiple states.  In 
essence, this means that there must always be sufficient supply to meet demand.     
 
Balancing supply and demand requires:  

 Sufficiently installed capacity to meet even extreme demand levels;  

 Generators or other resources that follow electric loads as they rise and fall throughout 
the day – known as regulation; 

 The ability to quickly recover from system shocks such as transmission of generation 
forced outages; and 

 A transmission and distribution system that can deliver power from where it is produced 
to where it is used.  

On a daily basis, a system must carry enough operating reserves to balance the grid and respond 
to unanticipated events, including forced outages and load forecast errors and other sudden 
changes in the demand and supply balance.  Operating reserves fall into three basic categories – 
regulation, spinning reserves and non-spinning (or supplemental) reserves.  Regulation reserves 
are synchronized with the electric grid and respond continuously over very short-time scales (i.e., 
seconds) to achieve balance voltage frequency and maintain power quality.  They are designed to 
respond to small load variations that take place all the time, but are quite small compared to large 
disturbances.  Spinning reserves are designed to maintain grid stability in response to system 
shocks such as near instantaneous generation and transmission outages.  They are typically 
required to start injecting power into the grid within a minute of notification and ramp up to 
deliver the full resource within 10 minutes.  Historically, spinning reserves have been provided 
by running some of the generating units on the system at less than full power (i.e., lower heat 
rates), even though doing so is less economical.  Plants running in this way have reserve 
productive capacity that can be ramped up relatively quickly if a major generating unit is forced 
off line.6  In addition, ramping production of power plants up or down too often can impose 
additional maintenance costs resulting from damage done by rapid increases and decreases in 
temperature and pressure.  Non-spinning or supplemental reserves also are designed to help 
stabilize the grid in response to large system shocks and, often times, replace spinning reserves 
when they are dispatched.  These are best thought of as stand-by resources that can be started and 
synchronized with the electric system with enough lead time, which can range from 10 to 30 
minutes.  Some markets, like the IESO and ISO-NE, have both 10 and 30 minute non-
spinning reserves.    
All of the above resources require fast response to either continuously balance the grid or to 
respond to unexpected changes in the supply and demand balance.  Electricity system operators 
                                                 
6 Generators providing spinning reserves typically monitor the electric grid frequency and automatically trigger if the frequency 
drops below a pre-specified level. 
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increasingly need resources that can be activated quickly in order to address fast ramping of 
electricity loads or fast decrease in intermittent power sources, like wind and solar.  Fast 
response resources such as AC loads provide operators additional flexibility in balancing the 
grid, if they are incorporated into operations.     
 
Historically, AC load control programs have been used as installed capacity or insurance against 
extreme system demand.  These programs target the relatively few hours that drive the need for 
additional capacity.  They have been used as alternatives for building peaking generator units 
that are more expensive and are only needed a few hours every few years. 
 
Until recently operating reserves have been supplied exclusively by generating equipment either 
synchronized with the load or in standby reserve status.  System shocks that lead to voltage 
fluctuations (e.g., forced outages or sudden changes in demand) are relatively infrequent and 
require relatively short operations to stabilize the system, allow generation production to "catch 
up," and restore reserves.  Prior analysis of the frequency of actual operations and their duration 
confirms this.7  For example, a 2006 study by Kirby noted that the grid in the Western U.S. 
experienced 77 voltage fluctuations greater than 0.1hz.  Generators have several constraints for 
providing spinning reserve such as ramping time, minimum on-time or minimum off-time.  
Historically, demand response – and in particular AC control – was not used to supply reliability 
services to the power system.    
 
Many of the loads on the electric grid are connected to processes that store energy; and 
depending on the amount of storage in these processes, it is possible to delay electricity use for 
some time without significantly effecting the functioning of the processes.  Water pumping, air 
separation, industrial compressors, rock crushing, air conditioning and water heating are 
examples of such processes.  The storage in these processes makes it possible to strategically 
schedule electricity demand in a manner that can lead to more efficient use of generating 
capacity and fuel.  Many of these processes can drop electricity demand quickly and frequently if 
events are relatively short with little or no impact on customers. 
 
AC load control programs may provide a lower cost alternative to spinning and non-spinning 
reserves required to quickly ramp up in the event of a forced outage of generation or 
transmission facilities or decline in production from intermittent resources such as wind and 
solar.  Loads with control devices also can respond more quickly than most generation facilities 
and ramp up to full capacity in usually less than five minutes.     
 
The technology for sensing system conditions, scheduling resources and controlling loads has 
evolved considerably over the past decade as communications and computing systems have 
continued to develop throughout the U.S. economy.  Several recent demonstration projects have 
shown that direct load control and Auto-DR technology can respond to curtailment requests very 
quickly, with little impact on customers, and can be integrated with the other resource 
management systems to provide real time feedback to operators concerning the results 
of operations. 
 

                                                 
7 Kirby, B.  2006.  Demand Response for Power System Reliability: FAQ. Oak Ridge National Laboratory. ORNL/TM-2006/565.  
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2.1 Differences Between AC Cycling and Generation 

Generation and DR based on AC cycling have different operating characteristics and the 
differences in these characteristics pose opportunities to use system resources more efficiently as 
well as problems in calculating the economic value of the resource that is being supplied.   
 
The first and most obvious difference between the operating characteristics of generators and AC 
load control is that, like all other forms of DR, it is basically the opposite of generation.  Instead 
of injecting power and voltage into the system, it typically removes demand for power from the 
system.8  It balances the shortages in supply by reducing demand rather than by increasing 
supply.  For short duration operation, such as operations for spinning reserves, AC loads can be 
fully curtailed, providing substantially larger reductions than traditional AC control operations.  
Load curtailment uses no fuel, produces no residual environmental impacts (i.e., greenhouse 
gasses) and causes no wear and tear on generation, transmission or distribution equipment.   
 
Another important difference between AC cycling and generation is that the load impacts from 
AC cycling arise from interrupting or curtailing loads for a relatively large number of devices, 
while the number of generators injecting energy into the electric system is relatively small.  Most 
generators are sized to produce relatively large blocks of power from a single unit (e.g., a 
50 MW combustion turbine generator).  To produce a load reduction of this magnitude using AC 
cycling requires controlling between 25,000 and 100,000 AC units depending on the weather.  
Because of the large number of devices required to produce the load reduction, the likelihood of 
the total failure of the AC cycling resource is inherently lower than that for a single generating 
unit or a small number of such units.  Just as it is unlikely that 100% or even 50% of generators 
will not be able to operate when dispatched, it is highly unlikely that most AC load devices will 
not work when they are dispatched. 
 
Another key difference is that the output capacity of a generator is known and available 
throughout the year.  If a generator starts and is working properly it will produce a known and 
highly predictable amount of power regardless of system conditions.  This is not true of AC 
cycling.  AC load varies substantially with weather and time of day.  While the load reduction is 
delivered via technology, the AC load itself results from customer behaviors in response to 
ambient temperature conditions.  When temperatures are low, controlling AC loads leads to no or 
small demand reductions because there is no load to control.  On the other hand, when 
temperatures are high, the same program can produce as much as 100 MW of load reduction in 
as little as 2 minutes and sustain the reduction for multiple hours, if needed.  However, AC load 
control can supply operating reserves under a limited set of conditions.  The sensitivity of AC 
loads to weather creates challenges in predicting the amount of AC load and load reductions 
available for grid operations and settlement.  Fortunately, while AC load is volatile, it is also 
predictable from ambient temperature and occurs in conjunction with the times during which 
installed capacity, operating reserves and ramp speed are most likely to be needed (i.e., when 
system loads are high due to AC load).  In a sense, AC cycling is at the same time the problem 
and the solution to it.   
 

                                                 
8 Several electricity systems have recently been concerned not only with shortages in supply but with excess supply.  In theory, 
load control can be used to both inject and remove demand from the system.  
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Figure 2-1 illustrates the sensitivity of the AC load to weather conditions and is based on the 
2009 sample of 550 AC units located in Northern California.   
 

Figure 2-1: Hourly Average Air Conditioner Load for Residential  
SmartAC Customers by Daily Maximum Temperature 

 
 
While the area lacks high levels of humidity, the area has a highly diverse climate.  For example, 
in a day where peak temperatures in the Bay Area range between 70 and 80°F, temperatures in 
the Central Valley will exceed 100°F and often times 110°F.  Importantly, average AC hourly 
demand is almost twice as high in a day with a maximum temperature between 90-95°F than on 
a day with a maximum temperature between 80-90°F.  On a day that exceeds 100°F, the AC load 
is, on average, three times as high as the average days with a peak between 80 and 90°F.  Even 
within relatively narrow temperature ranges, AC load varies substantially.     
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Table 2-1 shows the distribution of AC load measurements by daily maximum temperature and 
hour of day.  For the same hour and in the same temperature band, electricity use can be as much 
as 40% lower or 40% higher than the average for that temperature band. 
 

Table 2-1: Distribution of Average Residential SmartAC Air Conditioner Loads Within Daily 
Maximum Temperature Bands 

Daily 
Maximum 

Temperature 
Band 

Hour Days Mean 

Percentile 

5th 10th 25th 50th 75th 90th 95th 

85°F to 90°F 

2:00-3:00 PM 26 0.45 0.24 0.28 0.31 0.47 0.55 0.61 0.65 

3:00-4:00 PM 26 0.59 0.35 0.39 0.45 0.62 0.73 0.77 0.77 

4:00-5:00 PM 26 0.71 0.40 0.49 0.59 0.73 0.84 0.94 0.94 

5:00-6:00 PM 26 0.77 0.48 0.57 0.65 0.80 0.90 0.98 1.00 

90°F to 95°F 

2:00-3:00 PM 32 0.65 0.35 0.41 0.48 0.68 0.77 0.89 0.92 

3:00-4:00 PM 32 0.84 0.53 0.58 0.63 0.87 0.95 1.03 1.25 

4:00-5:00 PM 32 1.01 0.66 0.70 0.85 1.05 1.13 1.21 1.40 

5:00-6:00 PM 32 1.09 0.79 0.85 0.93 1.09 1.23 1.33 1.43 

95°F to 100°F 

2:00-3:00 PM 20 0.87 0.55 0.60 0.72 0.87 0.95 1.20 1.23 

3:00-4:00 PM 20 1.10 0.73 0.84 0.97 1.11 1.19 1.45 1.48 

4:00-5:00 PM 20 1.30 0.90 1.04 1.23 1.32 1.36 1.63 1.65 

5:00-6:00 PM 20 1.38 1.04 1.17 1.30 1.41 1.49 1.56 1.63 

 
2.2 Prior Research On Using Air Conditioner Control for Spinning and 

Non-spinning Reserves 

To date there have been several studies that have tested the potential of controlling AC loads in 
order to provide operating reserves and assessed the ability of integrating control of AC loads 
into operations.  The conceptual framework and the policy reasons for using AC as spinning 
reserves were detailed in a series of reports by the Oakridge and Lawrence Berkeley National 
Laboratories.9, 10  In addition, Lawrence Berkeley National Laboratory, Pacific Gas & Electric 
(PG&E) and Southern California Edison (SCE) sponsored a series of demonstration studies 
testing the ability to use AC load control to provide operating reserves.   Combined, the studies 
show that: 

 AC load control reduces demand quickly.  The PG&E 2009 Pilot tested both the ramp 
time and latency of the load control signal.  Because telecommunications or radio signals 
are used, a lag exists between when the load response signal is sent, when it is received 
and how long it takes for all units to receive it.  In the 71 tests conducted, on average, AC 

                                                 
9 Kueck, J., B. Kirby, R. Staunton, J. Eto, C. Marnay, C. Goldman, C.A. Martinez.  2001.  Load As a Reliability Resource in 
Restructured Electricity Markets.  Prepared for the U.S Department of Energy. http://certs.lbl.gov/pdf/load-reliability.pdf 
 
10 Kirby, B.  2003.  Spinning Reserve From Responsive Loads. Oak Ridge National Laboratory. ORNL/TM-2003/19. 
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units begin to noticeably shut down or cycle compressors within 60 seconds of when the 
load control signal is sent out and consistently reached full capacity within 6 minutes.  In 
addition, to being dispatchable at localized levels, most newer load reduction control 
devices, including those at PG&E, also have the ability to shed load automatically when 
frequency fluctuations are detected and do not require instruction from a central location.  
The frequency set point at which the AC units are automatically shut down is also 
adjustable.  In other words, the load control devices have a built in failsafe mechanism to 
respond to grid disturbances.   

 The effect of short-duration AC curtailments on customer comfort is negligible.  In 2009, 
the SCE demonstration measured the extent to which fully curtailing AC loads affected 
internal building temperatures.  The study quantified the increase in indoor temperatures 
as a function of outside temperatures and the duration of the curtailment operation.  It 
concluded that the vast majority of residents were not aware that they had received an 
event and 80% did nothing in response to the event.  The events had a minimal effect on 
the temperature of the participating households, with temperature increases of only a few 
degrees at most.  That same year, the PG&E demonstration instructed roughly 2,000 
control devices to completely shut down AC compressor electricity use 71 times for 15 
minutes at a time.  PG&E assessed the effect on customer comfort and the ability of 
customers to perceive the events by surveying customers whose AC units were instructed 
to shut off and a control group of customers whose AC units were not curtailed.  The two 
groups did not report a distinguishable difference in comfort or in the ability to perceive 
AC control operations.  

 AC load drops can be observed on near real time basis using samples.  Each of the 
studies sampled a subset of the AC units so they transmitted data on electricity use within 
a minute or less.  The data from these individual sites were aggregated and posted on a 
website so both the AC loads and the demand reductions could be observed in near real 
time.  In addition, users had the ability to view the AC loads and demand reductions in 
aggregate or for specific feeders.  

 The demand reductions observed in the samples were also observed in the distribution 
feeder circuits.  In addition to near real time data on AC loads, the studied intentionally 
focused on feeders were a large share of the residences had enrolled in the AC load 
control program.  This was done to confirm to system operators that the reductions 
observed in the sample also could be observed on the feeder loads. The interface was set 
up so the users could observe in near real time the share of AC units that were on, the AC 
loads from the sample, the aggregate demand reduction estimate based on the sample and 
the feeder loads.  During hotter days, the drops in AC load could be clearly observed in 
the loads and matched the demand reduction estimates produced using the sample of 
AC units.  

After testing the capability of AC loads to provide operating reserves, SCE has since been 
bidding a small share of its roughly 600 MW of AC load resources into the California System 
Operator (CAISO).  This phased approach has been undertaken to fully address the key 
remaining questions around integration of AC load control into electricity markets and 
operations.  This report focuses on one of the key aspects, namely, how to accurately measure 
demand reductions from AC load curtailments for settlement and operations. 
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2.3 Prior Research On Demand Response Settlement Accuracy 

Large C&I loads have participated in ISO markets for well over a decade.  As a result, much of 
prior research on estimating demand reductions for settlement have focused on large commercial 
and industrial customers that have little weather sensitivity compared to AC and residential 
loads.  There also has been some research on different settlement methods for programs that 
provide customers a rebate if they cut back energy use during high system load hours (Peak Time 
Rebates).  However, none of these studies have assessed different measurement alternatives for 
market settlement of AC load curtailment programs.  
 
To estimate the counterfactual for settlements, electricity markets have traditionally used day-
matching baselines, which are calculated using the participant’s load during days preceding the 
event.  With this approach, demand reductions are calculated as the difference between the 
estimated baseline and actual electricity use patterns during curtailment events.  While there are 
more accurate methods to estimate the counterfactual – or load in the absence of demand 
response – baselines are useful because they allow settlement to be conducted quickly and are 
relatively intuitive and easy to understand.  Many options exist for calculating baselines.  Day 
matching baselines vary based on: 
 

 The set of days used to calculate the baseline:  For example, the baseline may be 
calculated using the 7 days with the highest load out of the 10 weekdays preceding the 
event or the last 10 weekdays, excluding event days; 

 Application of in-day adjustments:  These adjustments effectively calibrate the baseline 
up or down based on a comparison between actual loads and baseline estimates during a 
set of hours preceding the event; and 

 Use of adjustment caps:  When in-day adjustments are used, the rules often limit the 
magnitude of the baseline in-day adjustments.   

Importantly, the common use of day-matching baselines is an outgrowth of the fact that ISO DR 
products typically target large C&I customers with limited weather sensitivity.  The accuracy of 
many day-matching baselines for settlement in electricity markets or with DR aggregators has 
been studied in a number of previous studies.  
KEMA (2003)11 compared the accuracy of 6 settlement baselines in 2003 using 646 accounts 
from multiple regions across the U.S.  In total, 206 of the study sites were participants in a DR 
program, while 440 were not.  Baseline error was assessed for non-participants.  The non-
participant baseline estimates were compared with actual loads for each hour of simulated 
curtailment periods.  For DR participants, the study compared how well the day-matching 
baselines tested aligned with regression models.   
 
Quantum Consulting (2004)12 estimated the accuracy of 4 settlement baselines using data from 
450 accounts in California, none of which were enrolled in DR programs.  The study compared 

                                                 
11 KEMA, Inc. 2003.  Protocol Development For Demand Response Calculation—Findings and Recommendations. Prepared for 
the California Energy Commission. http://www.energy.ca.gov/reports/2003-03-10_400-02-017F.PDF 
 
12 Quantum Consulting and Summit Blue Consulting.  2004. Working Group 2 Demand Response Program Evaluation – 
Program Year 2004 Final Report.  Prepared for the California Public Utilities Commission.  
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baseline predicted loads to actual loads on three types of days – high load days, low load days 
and consecutive days.  It selected 3 to 7 proxy event days based on system load, with the number 
of event days selected varied by utility. 
 
Lawrence Berkeley National Lab (2008)13 also compared accuracy of 7 alternate settlement 
baselines using data from 32 sites in California, all of which were enrolled in an Auto-DR 
program.  The study compared baseline predicted loads to actual loads on 60 days per site.  The 
proxy event days were selected based on weather.  It was the first study to assess accuracy by 
comparing actual and predicted baseline load for DR participants.  All prior studies had drawn 
conclusions based on either non-participants or comparisons of one estimate to another estimate.   
 
As part of the 2009 California Statewide Evaluation of Aggregrator Programs, Christensen 
Associates Energy Consulting (CAEC) analyzed the accuracy of the baselines used for 
settlement.14  At the time, the program only included large C&I customers with over 100 kW of 
demand.  The included a comparison of baseline calculated impacts to regression calculated 
impacts for actual events and for pseudo events where the actual baseline was known.    
 
In 2010, FSC analyzed the accuracy of 48 different baseline day-matching methods for a large 
C&I contractual DR program administered by the Ontario Power Authority, DR-3.15  The study 
differed in that it was the first to explicitly distinguish between baseline error and errors in 
calculating demand reduction attributable to the program – impact error.  It also explicitly 
quantified the extent to which the baseline error was magnified in estimated impacts when the 
true percent demand reductions were smaller.  
 
In 2010, CAEC studied the issue of baseline accuracy for California’s Capacity and Demand 
Bidding Programs.16  The focus was on the accuracy of baselines for high volatility and weather 
sensitive customers and the effect of increasing the same-day adjustment cap.  The 2010 study 
simulated impacts on event-like days.  This allows the researchers to know the true demand 
reduction amounts and assess accuracy by comparing the estimated demand reduction to the 
simulated reduction.  
 

                                                                                                                                                             
 
13Coughlin K., M.A. Piette, C. Goldman, and S. Kiliccote. 2008. Estimating Demand Response Load Impacts: Evaluation of 
Baseline Load Models for Non-Residential Buildings in California.  Ernest Orlando Lawrence Berkeley National Laboratory. 
LBNL-63728.  http://eetd.lbl.gov/ea/EMS/EMS_pubs.html 
 
14 Braithwait, S., D. Armstrong. 2009. Load Impact Evaluation of California Statewide Aggregator Demand Response Programs.  
Volume 2: Baseline Analysis of AMP Aggregator Demand Response Program.  Prepared for the California Demand Response 
Measurement & Evalution Committee. 
 
15 Bode, Perry and Morgan (2010). Assessment of Settlement Baseline Methods for Ontario Power Authority's Commercial & 
Industrial Event Based Demand Response Programs.  Prepared for Ontario Power Authority.  Toronto, ON.  November 2010.  
 
16 Christensen Associates Energy Consulting.  2010. Highly Volatile-Load Customer Study.  Prepared for Southern California 
Edison, Pacific Gas and Electric, and San Diego Gas and Electric. 
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In 2011, KEMA analyzed baseline methods for PJM.17  The focus was on the use of day 
matching baselines for large C&I customers and the study tested a number of estimation 
methods, including day matching and regression, and tested a number of rules for selecting the 
data for developing the baselines.  It also tested each of the settlement baseline methods that 
were used in different jurisdictions. 
 
As part of the 2009 SCE and PG&E pilots testing the ability of providing operating reserves 
using AC load control, the demand reductions were calculated.  Because of the short duration of 
events, FSC estimated the PG&E demand reductions using an autoregressive regression model 
and AC end use data.  The models estimated what usage would have been as a function of the 
load before and after the curtailment, excluding the 15 minutes immediately after the curtailment 
ended, weather, and binary variables to capture time of day effects.   For the first phase of the 
SCE demonstration, KEMA relied on a simple regression that used the feeder loads in the 10 
minutes before curtailment to estimate the counterfactual and demand reductions. However, 
when the pilot expanded to include additional feeders, the algorithm did not perform reliably 
during times when the overall load trend was changing, such as in the late afternoon or early 
evenings.  It also was less reliable for the feeders when the share of customers with controllable 
AC units was lower than in the initial phase.  For Phase 2 of the SCE demonstration project, 
KEMA developed a load matching technique to select patterns of five-minute loads from days 
without curtailments that were “closest” to loads on the days with curtailments.  The approach 
worked for the feeders with the highest levels of air conditioner control penetration but was not 
able to detect statistically significant impacts on feeders when the program penetration was lower 
or during cooler days.   
 
Another key topic in the literature regarding settlement baselines is distinguishing true variation 
in the performance of DR resources from variation due to measurement error.  This topic was 
recently studied in the context of the automated response of large C&I facilities to dynamic 
prices.18  The main conclusion was that measurement error from baselines accounted for a 
substantial share of the reported event-to-event variability in large customer curtailments.   
 
This body of studies developed a growing consensus on how to assess accuracy of baselines.  In 
specific, the use of proxy event days using DR participant pre-enrollment data is more prevalent 
in the latter studies because it allows a comparison of estimated impacts to actual known 
impacts.  In addition, the studies drew the conclusion that calibrating baselines using the hours 
prior to the event improved baseline accuracy substantially.  Finally, the majority of the studies 
indicated that a 10-in-10 day-matching with same day adjustments is the most accurate baseline 
for large C&I customers.  
 
Based in part on this body of research, the California ISO adopted a 10-in-10 baseline with same 
day adjustment, capped at 20%, as the standard settlement method for its DR ancillary service 

                                                 
17 KEMA, Inc. 2011. PJM Empirical Analysis of Demand Response Baseline Methods.  Prepared for the PJM Markets 
Implementation Committee.  http://pjm.com/markets-and-operations/demand-response/~/media/markets-ops/dsr/pjm-analysis-of-
dr-baseline-methods-full-report.ashx 
  
18 Mathieu, J., D.S. Callaway, and S. Kiliccote. 2011. Variability in Automated Responses of Commercial Buildings and 
Industrial Facilities to Dynamic Electricity Prices.  Energy and Buildings. Volume 43, Issue 12, December 2011 
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market products.  However, the accuracy of these baselines has not been systematically tested for 
AC curtailments or residential loads until this study.  
 
Except for the 2010 study conducted for OPA, each of the studies focused on the accuracy of the 
settlement baselines, not on the accuracy of the demand reduction estimates.  Effectively, the 
accuracy of baselines are used as a proxy for the accuracy of demand reduction estimates.  The 
benefit of focusing on the accuracy of baselines is that it makes for a simpler and 
clearer analysis.  
 
Focusing on baseline accuracy rather than the accuracy of the demand reductions has key 
shortcomings, however: 

 It is not an assessment of the accuracy of demand reduction measurements.  Good 
baselines explain much of the variation in electricity use, reducing noise and allowing for 
better detection of the signal of interest – the demand reduction.  However, reducing the 
noise substantially does not mean that the signal is detected correctly.  The ability to do 
so depends in part on the strength of the signal in comparison to the remaining noise.  As 
we document later, it is possible to explain well over 99% of the variation in feeder loads, 
but if the signal is relatively small, it is still difficult to correctly detect.  The focus on 
baseline error is analogous to assessing which method is better at reducing noise.  While 
useful, it is not an assessment of how well the signal – the demand reduction – can be 
detected.  

 Reporting the magnitude of the error relative to the baseline can create the impression 
the demand reduction measurements are more accurate than they are in reality.  This is 
particularly true for day matching methods and is best illustrated through an example.  
Assume the true demand reduction and the true counterfactual – the electricity use absent 
curtailment – are 2 MW and 10 MW, respectively. A 5% upward bias in the settlement 
baseline will produce a baseline of 10.5 MW and a calculated load reduction of 2.5 MW 
(10.5 MW minus the metered load of 8 MW).  While the baseline upward bias is 5%, the 
estimated demand reduction is biased upward by 25%; it is 2.5 MW rather than the actual 
2.0 MW.  Few readers will take the extra step to calculate how error in the baselines is 
magnified in the demand reductions estimate.   

Appendix A provides a more detailed discussion on why the accuracy of baselines differs from 
the accuracy of the demand reduction measurements and includes additional examples. 
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3. Framework for Assessing Accuracy of Demand Reductions Measurements 

To assess accuracy of different alternatives for estimating AC demand reductions, we rely on a 
realistic simulation of AC load curtailments on actual feeder, household and AC end-use data.  In 
order to assess accuracy, it is necessary to know the actual answer.  If the “true” answer is 
known, it is possible to assess how close different measurement alternatives were to the right 
answer.  A simulation is useful precisely because the real answers are known. 
 
Rather than focus on the accuracy of baselines – that is, the estimate of what customers would 
have used absent curtailment – we focus on the accuracy of the demand reductions estimates.  
Many prior studies have used the accuracy of baselines as a proxy for the accuracy of demand 
reduction estimates.  However, the baselines are simply a means to produce demand reductions 
estimates.  As noted earlier (and in Appendix A), an emphasis on baseline errors is analogous to 
assessing which method is better at reducing noise.  While useful, it is not a direct assessment of 
how accurately the signal – the demand reduction – is measured.  
 
Figure 3-1 summarizes the general framework used for assessing the accuracy of the demand 
reduction measurements.  To implement the assessment framework, we: 

 Calculated the magnitude of controllable AC loads.  For settlement alternatives that rely 
on feeder and household data, the strength of the demand reduction signal is weaker than 
it is with AC end-use data.  In this step, we estimate how much of the load from the data 
source can be controlled for each date and hour.  For settlement alternatives that rely on 
AC end use data, this is an unnecessary step.  

 Selected proxy curtailment events.  In total, 15 curtailment days were randomly selected 
in 2009 and 2010 from the set of weekdays where daily maximum temperature exceeded 
85°F.  The threshold was used because in Northern California, AC units are not used 
much at lower temperatures due to the dry climate and the substantial cooling that occurs 
overnight.  This temperature threshold is exceeded quite frequently during summer 
months in the inland areas of California where most of the AC load control program 
participants are located.  The curtailment event start times were randomly selected 
between 12 PM and 10 PM with durations of one or two hours.  The proxy curtailment 
events are designed to reflect use of AC load control during spinning or non-spinning 
operations or to provide fast ramping capability. 

 Simulated the demand reductions:  The simulated demand reductions rely on the variation 
observed in historical percent reductions of air conditioner load from annual impact 
evaluations. The percent reductions incorporate the effect of weather plus a random 
variation component.  The size of the reduction is conservative because it relies on results 
from normal, multi-hour control operations, when AC loads are not fully shed.19  The 
percent reductions were then applied to the controllable AC loads to produce the 
simulated demand reduction.  Importantly, with this process, the demand reductions for 

                                                 
19 Because of the short duration of spinning and non-spinning operations, it is possible to fully shed AC loads, producing larger 
demand reductions and a stronger signal.  Because the evaluation percent reductions are themselves estimates, they contain some 
degree of measurement error for individual events.  As a result, the process applied likely overstates the true variation in percent 
load reductions.  In both cases, this places a more stringent test on the ability of the measurement alternatives to detect the 
demand reductions  since it requires detecting weaker signals with more volatility. 
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each curtailment event are known, making it possible to test how accurately each of the 
different settlement alternatives measures the load drop.  

 Applied the demand reductions to unperturbed loads.  During each of the proxy 
curtailment event periods, the simulated demand reductions were subtracted from the 
unperturbed loads.  In other words, we knew the actual demand with and without the 
simulated curtailments as well as the magnitude of the demand reductions.  The demand 
reductions per AC unit were similar for the feeder, household and AC end use data 
simulations.  However, the reductions were a smaller percent of the overall feeder and 
household loads than of the AC loads.  Households had additional non-AC electric loads 
that reduce the signal to noise ratio.  And, feeder loads had additional noise from 
households that did not enroll in the load control program, including customers without 
AC units and commercial and industrial loads.    

 Calculated the demand reductions using each data source and 10 estimation methods:  
The demand reductions were calculated using the feeder, household and AC end use data.  
The calculation methods tested are detailed later in this section, but included day and 
weather matching methods, regressions and approaches that relied on control groups.  
Each combination of a data source and calculation method was considered a separate 
measurement alternative. 

 Assessed the accuracy of each of the settlement alternatives:  For each of the curtailment 
events, we knew the true load patterns without curtailment and the true demand 
reductions.  In other words, we had the answer key and could grade which measurement 
approaches got the right answer, and, if not, how close they were to doing so.  As a result, 
we were able to assess the accuracy of each measurement alternative.  To standardize the 
comparison, we used metrics designed to assess if the measurement alternatives 
systematically over or under-reported demand reductions (bias) and metrics that 
summarized how close the measurements were to the true demand reductions (goodness-
of-fit).  These metrics are detailed later in this section.  
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Figure 3-1: Overview of Framework 

 

The remainder of this section provides details regarding each step, including information about 
the underlying sources used and, where appropriate, simplified examples.  The section concludes 
with discussion on how sampling error was incorporated into the estimates of measurement 
accuracy.  Sampling error and sample sizes have different implications for within-subject 
estimators – that is, estimates that rely on using data from days without curtailment – than they 
do for between-subject estimators – that is, calculation methods that rely on a comparison of two 
groups.  As a supplement, Appendix B provides additional detail on the feeder, household and 
AC end-use data sources. 
 
3.1 Calculation of Controllable AC Loads 

The controllable AC loads were calculated by multiplying hourly AC load profiles by the 
appropriate number of AC units.20  For example, if the maximum temperature for a particular 
day was between 90°F to 95°F in the California Central Valley and the time was between 3 and 4 
PM, based on historical data, the average AC unit uses 0.92 kW.  In addition, for each feeder, the 
number of controllable AC units is known.  Suppose the feeder had 88 AC units (this was 
actually the average number of controllable AC units per feeder).  The controllable AC load for 

                                                 
20 This step was not necessary for AC end use data. 
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the feeder is estimated by multiplying the demand per AC unit (0.92) by the number of 
controllable AC units (88).  In the example, there is 81.1 kW of controllable load.  
  
In 2009, PG&E collected data on AC end use electricity data for a sample of 547 AC units 
enrolled in the load control program.  The sample was stratified across three different climate 
regions.21  Importantly, AC loads for these units were not curtailed during the time period.  In 
other words, the sample reflected how customers enrolled in SmartAC naturally operated their 
AC units without the intervention of load control.  This AC load data was used to create 24 
hourly load profiles, based on temperature conditions, for each of three geographic regions.22  
The temperature conditions were defined based on the cooling degree days and ranged from 0 to 
22 in increments of two.   
 
As an example, Figure 3-2 shows the average demand per AC units for each hour and heat 
intensity bins for the Very Hot climate region.  Appendix C includes tables with the average AC 
use for each  climate region, daily temperature profile and hour. 
 

Figure 3-2: Average Demand per AC Unit in a Very Hot Region (Fresno/Bakersfield) By 
Cooling Degree Day Category and Hour 

 

 

                                                 
21 The coastal region, which includes San Francisco and Oakland, was excluded since less than 1% of SmartAC residential 
participants are located in that region 
 
22 Cooling degree days are a measure of heat intensity and are designed to reflect the conditions under which space cooling is 
needed.  It is calculated by subtracting a base value, 65˚F, from the average temperature in the day.  Unlike a metric like daily 
maximum temperature, it is not only the peak but overnight heat build-up which can significantly affect AC use.  
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3.2 Selection of Proxy Event Days and Hours 

In total, 15 weekdays per year were randomly selected from all days when the SmartAC average 
customer maximum temperature met or exceeded 85°F during the months of July through 
September.  Days with a daily maximum temperature below 85°F generally have little AC load 
in California because overnight temperatures cool off substantially more than in humid regions.  
Overall, SmartAC customers are generally in inland areas that frequently exceed this threshold in 
the summer months of June through September.   For example, in the hottest region – the 
Fresno/Bakersfield region of the Central Valley –daily maximum temperatures exceeded 90°F on 
76% of summer days.  In the second hottest region – the Northern part of the Central Valley near 
Stockton and Sacramento – daily maximum temperatures exceeded 90°F on 43% of the days.   
 
For each event day, event start times were randomly selected between 12 PM and 10 PM.  Since 
system shocks and the need for ramping speed can occur at various times, it was important to 
introduce variation in the timing of the proxy curtailments.  In addition, the duration of events 
was randomized between one and two hour durations.  While in practice most spinning and non-
spinning dispatches are very short, lasting less than 15 minutes, the event durations were at the 
hourly level for 4 reasons.  First, hourly events allowed comparison across feeder, household and 
AC data.  This was necessary because most of the historical household data was at hourly 
increments.  Second, while long events are rare, reserves are required to be able to deliver 
resources for at least two hours.  This means that the baseline settlement method needs to be 
robust for such events.  Third, one or two hour events provide additional information about the 
accuracy of different measurement for grid operations other than spinning and non-spinning 
reserves.  The fourth reason is that AC loads can also provide operators flexibility during multi-
hour ramp events. 
 

Table 3-1: Characteristics of Test Events 

Date Start End 
Duration 
(hours) 

Daily Maximum Temperature (˚F) 

Very Hot 
(Fresno / 

Bakersfield) 

Hot 
(Sacramento 
/ Stockton) 

Warm  (Diablo 
Valley / South 

Bay) 

Population  
Weighted 
Average 

July 13, 2009 1:00 PM 2:00 PM 1.0 95.9 93.8 94.1 94.3 

July 15, 2009 2:00 PM 4:00 PM 2.0 105.9 99.3 91.1 97.0 

July 16, 2009 4:00 PM 6:00 PM 2.0 106.5 99.4 92.6 98.2 

July 27, 2009 8:00 PM 9:00 PM 1.0 105.9 100.6 90.3 97.6 

August 13, 2009 1:00 PM 2:00 PM 1.0 97.8 93.2 86.5 91.4 

August 18, 2009 5:00 PM 6:00 PM 1.0 100.9 94.8 85.3 92.5 

August 21, 2009 10:00 PM 11:00 PM 1.0 100.3 98.3 95.3 97.3 

August 26, 2009 1:00 PM 3:00 PM 2.0 99.8 91.9 84.3 90.7 

August 28, 2009 12:00 PM 1:00 PM 1.0 98.7 96.8 99.7 98.1 

September 2, 2009 2:00 PM 4:00 PM 2.0 101.3 96.1 96.9 97.3 

September 3, 2009 9:00 PM 11:00 PM 2.0 101.0 99.0 94.9 97.2 

September 11, 2009 9:00 PM 11:00 PM 2.0 97.1 97.9 95.7 96.4 

September 17, 2009 6:00 PM 7:00 PM 1.0 93.4 90.1 89.1 90.2 

September 18, 2009 9:00 PM 10:00 PM 1.0 100.3 96.1 96.0 96.6 
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Date Start End 
Duration 
(hours) 

Daily Maximum Temperature (˚F) 

Very Hot 
(Fresno / 

Bakersfield) 

Hot 
(Sacramento 
/ Stockton) 

Warm  (Diablo 
Valley / South 

Bay) 

Population  
Weighted 
Average 

September 23, 2009 6:00 PM 7:00 PM 1.0 100.3 97.2 88.5 94.0 

July 14, 2010 12:00 PM 2:00 PM 2.0 99.5 94.0 88.6 93.0 

July 16, 2010 8:00 PM 9:00 PM 1.0 105.1 99.4 88.5 96.1 

July 19, 2010 4:00 PM 6:00 PM 2.0 104.1 96.9 82.1 91.8 

July 23, 2010 12:00 PM 1:00 PM 1.0 100.7 92.8 84.0 90.6 

August 3, 2010 6:00 PM 8:00 PM 2.0 100.2 93.4 85.0 91.6 

August 16, 2010 8:00 PM 9:00 PM 1.0 98.5 93.7 83.1 90.4 

August 23, 2010 4:00 PM 6:00 PM 2.0 96.2 94.5 96.4 95.5 

August 26, 2010 7:00 PM 8:00 PM 1.0 104.7 91.0 81.3 90.2 

September 1, 2010 8:00 PM 9:00 PM 1.0 94.7 92.9 93.9 93.5 

September 2, 2010 1:00 PM 3:00 PM 2.0 102.1 97.9 96.8 98.2 

September 3, 2010 9:00 PM 11:00 PM 2.0 103.2 97.2 90.9 95.8 

September 6, 2010 2:00 PM 4:00 PM 2.0 94.8 91.3 93.5 92.8 

September 28, 2010 12:00 PM 2:00 PM 2.0 100.6 99.7 100.4 100.0 

September 29, 2010 2:00 PM 4:00 PM 2.0 100.0 100.0 96.4 98.1 

September 30, 2010 10:00 PM 11:00 PM 1.0 99.8 92.8 86.9 91.6 

2009 12:00 PM 11:00 PM 1.4 100.3 96.3 92.0 95.3 

2010 12:00 PM 11:00 PM 1.6 100.3 95.2 89.8 93.9 

 

Table 3-1 summarizes each of the proxy events including date, start and end time, durations and 
temperature conditions.  It includes both daily maximum temperature values for each climate 
region and the daily maximum temperature weighted for the mix of SmartAC residential 
participants across the PG&E service territory.  The temperatures during the proxy curtailment 
periods were generally substantially lower than the daily maximum because the events ranged 
from 12 PM to 11 PM.  While event days were hotter than average, they were neither extreme 
nor rare.  On average, event period temperatures were about 87°F, but ranged from a low of 71°F 
to a high of 98°F due to variation in weather and event periods.  During the cooler days, AC 
units may have been in operation in areas with less heat intensity, such as the Inland portions of 
the Bay Area. 
 
3.3 Simulation of Demand Reductions 

The simulated demand reductions were calculated by multiplying the controllable load by a 
percent load reduction.  For each proxy curtailment event, the percent load reductions were based 
on regression analysis of historical impacts by temperature plus a random variation component.  
The feeder data example from above assumes a 35% reduction leads to a 21.1 kW drop in AC 
demand (81.1 kW x 35%).  On a per AC unit basis, the simulated demand reduction in the 
example is 0.32 kW (0.92 x 35%).  
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Figure 3-3 plots the estimated percent load reductions and temperature conditions for the average 
AC unit in each of the three warmer PG&E climate regions. 
  
Figure 3-3: Percent Load Reductions by Temperature Conditions for the Average AC Unit 

(SmartAC Measurement and Evaluation Sample) 

 
 
Between 2008 and 2010 PG&E called a total of 34 events on a representative sample of AC units 
to evaluate program impacts and assess how impacts varied under different event conditions.  
While the program is designed to operate when the system is peaking, many of the evaluation 
test events were called when temperatures were cooler than what would be expected for normal 
operations in order to understand the demand reduction potential under different weather 
conditions..  For most of the events, AC units were controlled for four hours under a partial 
control strategy - 50% cycling – which still allows the AC unit to cool homes.  A few of the 
events lasted up to six hours or employed more intense cycling strategies such as 66% cycling, 
but were generally limited to half the sample and were excluded from the historical data on 
percent load reductions. 
 
Because the simulated impacts are based on a 50% cycling strategy, they yield smaller impacts 
that instructing devices to shut off the AC compressor (load shed operations).  In other words, 
the strength of the signal – demand reductions – shrinks relative to the back ground noise when 
the AC units are not fully curtailed.  In all cases, the accuracy of the impact estimates improves 
with load shedding because it produces a stronger signal that is easier to distinguish from 
background noise. 
 
3.4 Application of Demand Reductions to Unperturbed Loads 

Next, the demand reductions were subtracted from the actual, unperturbed electric load data, at 
the unit of analysis, for each relevant hour.  As a result of this process, the true loads with and 
without the AC curtailment as well as the true demand reductions were known.  In the feeder 
data example, this involves subtracting the aggregate reduction in AC use, 21.1 kW, from the 
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total feeder demand, 7,159 kW.  The aggregate air conditioner reduction is very small compared 
to the feeder load for two reasons.  First, only a small fraction of customers on the example 
feeder were enrolled.  Second, the example curtailment event day is a relatively mild day in the 
Central Valley.  Although the daily maximum temperature was assumed to be between 90°F and 
95°F, there is little humidity in the area and temperatures cool substantially overnight.  If instead 
the 21.1 kW were substracted from the household data of SmartAC participants on the feeder, 
150.1 kW, the percent reduction is a substantially larger share of the relevant load. 
 
3.5 Demand Reduction Calculation Methods Used 

The next step was to estimate the demand reductions using different measurement alternatives.  
Each combination of the calculation method and data source is considered as a distinct 
measurement alternative because both affect the accuracy of measurements.  The different data 
sources have different amounts of non-AC end uses and “background noise” from which the 
demand reduction – the signal – must be detected.     
 
This was done using feeder, household and AC end use data.  Table 3-2 summarizes the 
calculation methods used.  A total of 10 different demand reduction calculation methods were 
applied to feeder, household and AC end-use data.  The least technical approach – a set of tables 
that provides estimates of the load curtailment based on daily maximum temperature, region and 
hour of day – is used as a benchmark to assess the extent to which more complex AC curtailment 
measurement alternatives improve accuracy.23  The 10 calculation methods can be classified into 
2 broad categories: within and between subject estimators. 

                                                 
23 The table amounts to a deemed estimate of the demand reduction based on the hour of day, temperature and location.  While it 
provides quick estimates of load reductions for operations and settlement, it is not a calculation method per se.  It still must be 
updated periodically based on more sophisticated evaluation methods. 
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Table 3-2: Summary of Measurement Alternatives Tested for Accuracy 

Type of 
Estimator 

Method Calculation 

Data Source 

Summary Description 
Feeder 

House 
Data 

AC  
end-use 

Within 
subject 
estimators 

Day 
matching 
baseline 

10-in-10 with a 20% in-day 
adjustment cap 

X X X 
A subset of weekdays when units were not cycled is identified and 
the average is calculated for each hour to produce a baseline.  
The days are selected from the 10 non-event weekdays closest to 
the load curtailment day.  The baseline is calibrated or adjusted 
using information about demand patterns in the hours preceding 
the curtailment (in-day adjustment).  Demand reductions are 
calculated as the difference between the adjusted baseline and 
metered load.  The process for weather matching baselines is 
similar except that the baseline load profile is selected from non-
event days with similar daily maximum temperature and then 
calibrated with an in-day adjustment.     

10-in-10 without an in-day 
adjustment cap 

X X X 

Top 3 in 10 without an in-day 
adjustment cap 

X X X 

Weather 
matching 
baseline 

Profile selected based on daily 
maximum temperature without 
an in-day adjustment cap 

X X X 

Regression 

Treatment variables and no day 
or hourly lags or leads 

X X X 
Regression analysis quantifies how different, observable factors 
such as weather, hour of day, day of week, location and load 
curtailments affect AC electricity use patterns.  With regressions, 
the impacts are usually directly estimated through the model 
parameters that reflect the effect of load control operations – 
known as treatment variables.  With treatment variables, the 
impacts are the difference between the regression estimates of 
AC use with and without load control.  Regression models can be 
informed by electricity use patterns in the day prior (day lags) and 
in the hours before or after an event (lags or leads).     

Treatment variables with a day 
lag 

X X X 

Treatment variables with hourly 
lags and leads 

X X X 

No treatment variables but use 
of hourly lags and leads 

X X X 

Between 
subject 
estimators 

Random 
assignment 
of load 
control 
operations 

Comparison of Means  X X 

AC load control program participants are randomly assigned to 
groups that do and do not have their AC unit instructed to reduce 
or shed AC load.  Any differences between the two groups are 
random, not systematic.  The group that is not subject to the load 
curtailment is typically referred to as the control group and 
provides information about normal electricity use patterns in the 
absence of AC curtailment.  Impacts are calculated as the 
difference in average demand between the group that is and is 
not dispatched (comparison of means).  The estimate can be 
refined by assessing inherent differences between the two groups 
in hot non-event days and netting them out of the demand 
reduction calculation (difference-in-differences). 
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Within-subject estimators use customer’s electricity use patterns during days when AC units are 
not curtailed to estimate AC load absent curtailment operations during actual event days.  They 
include demand reduction calculation methods such as individual customer regressions and day 
and weather matching baselines.  They work because the AC curtailment is introduced on some 
days and not on others, making it possible to observe behavior with and without the load control 
in effect. 
 
Between-subject estimators rely on an external control group of AC units that are not curtailed to 
provide information about AC units that were curtailed and would have used electricity if they 
were not instructed to shed load.  While there are several types of between-subject calculation 
methods we only consider two simple options that rely on random assignment to load control 
operations: a simple comparison of means and a difference-in-differences calculation. 
 
3.5.1 Impact Estimate Tables 

Impact estimate tables are the least technical approach and are typically constructed at the AC 
unit level.  They are essentially a detailed lookup table.  They rely on actual AC electricity use 
patterns and historical percent load reductions under specific, discrete temperature conditions 
and can be customized for specific regions.  For example, based on historical data from the AC 
end use sample that was not subjected to AC load curtailments, the average electricity use for a 
Central Valley residential AC unit is 1.2 kW between 3 PM and 4 PM when the daily maximum 
temperature is between 95°F and 100°F.  Historically, when cycled at those temperatures, AC 
use dropped by 35%, on average, though there was variation in the percent reductions estimated 
for individual events.  Based on the decision matrix, we would estimate that impacts for a similar 
day are 0.42 kW per AC unit (1.2 kW x 35%).  In practice, the actual unperturbed load without 
DR for that day and the percent load reduction may be different than those in the table, leading to 
some error.  For example, if the true uncontrolled AC load were 1.1 kW and true percent impacts 
were 30% (0.33 kW), the table impact estimates would be too high by 22%.  While not complex, 
the approach is practical and low cost.  It serves as a useful baseline for assessing how much 
value is added by using more complex baseline calculation approaches.  
 
To assess the accuracy of impact estimate tables it was necessary to replicate the fact that a 
sample was used to create the table.  In this process, a random sample was drawn from the 
population and used to construct the tables.  The tables produced using the sample provided an 
estimate for the demand reductions in the population.  The accuracy of the tables was assessed 
by gauging how close the predictions from the tables were to the known, simulated demand 
reductions in the population. 
 
3.5.2 Day and Weather Matching Baseline Methods 

Day-matching is a less technical approach than regressions for developing an estimate of what 
electricity use would have been in the absence of load control.  It also has been widely used by 
ISO’s for settlement of DR products designed for large C&I customers.  This calculation method 
relies solely on electricity use patterns when the AC unit is not controlled.  A subset of weekdays 
when units were not cycled is identified.  These are usually days in close proximity to the event 
day.  In each case the electricity use in each hour of the identified days is averaged to produce a 
baseline.  While there are more accurate methods to estimate the counterfactual – or load in the 



 

 25

absence of demand response – baselines are useful because they allow settlement to be 
conducted quickly and are relatively intuitive and easy to understand.  Many options exist for 
calculating baselines.  Day-matching baselines vary based on: 

 The set of days used to calculate the baseline:  For example, the baseline may be 
calculated using the 7 days with the highest load out of the 10 weekdays preceding the 
event or the last 10 weekdays, excluding event days; 

 Application of in-day adjustments:  These adjustments effectively calibrate the baseline 
up or down based on a comparison between actual loads and baseline estimates during a 
set of hours preceding the event; and 

 Use of adjustment caps:  When in-day adjustments are used, the rules often limit the 
magnitude of the baseline in-day adjustments.   

Day-matching baselines are often supplemented with corrections to incorporate information 
about usage patterns in the hours preceding an event – usually referred to as in-day or same-day 
adjustments.  In-day adjustments are common and reduce the error between the unadjusted 
baseline and actual loads. Appendix D provides a detailed example of how in-day adjustments 
are applied.   
 
Many jurisdictions cap the magnitude of in-day adjustments in order to limit the potential for 
manipulation of the baseline.  With AC load control, gaming is not a concern for two reasons.  
First, AC direct control participants are not directly compensated for performance or non-
performance during events and have no incentive to manipulate load in order to change the 
baselines.  Second, AC curtailments typically occur without any advance announcement.  If used 
for grid operations, the short lead times for activations of AC curtailments does not provide 
enough time to manipulate baselines.  
 
The high weather sensitivity of AC loads has key implications for baseline in-day adjustments, 
however.  As noted earlier, a day with a daily maximum of 95°F can lead to more than twice the 
electricity use of a day of 90°F.  This has two key consequences.  First, ratio adjustments often 
need to be large and can exceed 200%.  Second, they are more volatile when applied to directly 
metered AC end-use because the baseline period can include many days when AC units were not 
on.  Dividing any value by a very small number (e.g., 1.2 kW/0.2 = 12) leads to very large 
adjustments.   
 
Weather-matching baselines are a variation from day-matching methods.  The main difference is 
that the comparable days are based on average hourly load patterns during non-event days with 
similar weather conditions, as defined by temperature bins.  These days may or may not be 
immediately prior to the curtailment event.  Continuing our earlier example, to produce a 
baseline for a weekday with a daily maximum temperature between 90°F and 95°F, the first step 
would be to identify weekdays with similar temperatures and without AC curtailments.  Suppose 
there were six such days.  The electricity use for each time period would be averaged for those 
six days to produce a baseline.  As with day-matching baseline, the baseline can be calibrated or 
adjusted using actual usage patterns in the hours preceding an event.  Given the sensitivity of AC 
load, this is recommended.     
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3.5.3 Regression Analysis 

Regression analysis quantifies how different, observable factors such as weather, hour of day, 
day of week, location and cycling affect AC electricity use patterns.  With regressions, the 
impacts are directly estimated through the model parameters.  In other words, the impacts are the 
difference between the regression estimates of AC use with and without load control.    
 
The analysis consists of applying regression models separately at the unit of analysis.  The 
regression specification is common over all units but estimated coefficients vary for each unit.  
The variables in the regression specifications model time-based and weather-based impacts.  The 
fact that each feeder has its own specification automatically accounts for variables that are 
relatively constant for each unit, such as geographic location, mix of load control switches versus 
smart thermostats and the strength of the communication network.  Because the coefficients are 
specific to the unit, they can better explain the variation in weather sensitivity and load patterns. 
  
Regression models work because AC load control naturally produces an alternating or repeated 
treatment design.  The primary intervention – AC load controls – is present on some days and not 
on others, making it possible to observe AC use with and without cycling under similar 
conditions.  A repeated introduction and removal of curtailment events allows for an assessment 
of whether the outcome – electricity consumption – rises or falls with the presence or absence of 
AC cycling.  This approach works if 1) the effect of AC cycling does not spill over into other 
days and 2) there is electricity use data for a sufficient number of days that match actual 
dispatch conditions. 
   
The four regression models tested as part of assessment vary primarily based on whether they 
predict loads as a function of the loads observed during prior or neighboring time periods (often 
referred to as auto regressive models).  The first model relies solely on external factors to 
estimate the electricity demand and demand reductions.  These include time of day, type of day 
(weekday/weekend) and total heat intensity over the prior 24 hours.  The second model uses the 
same external factors plus the usage during the same hour of the prior day to estimate usage 
patterns and demand reductions.  The third model uses the same external factors plus information 
about loads observed in the hours neighboring the curtailment event.  In the first three models, 
the demand reductions are estimated by variables that interact with the curtailment and 
temperature conditions.  The fourth model is the same as the third one, with one key exception.  
It does not estimate the demand reduction based by using a variable to represent the event.  
Instead, impacts are calculated by taking the difference between the regression prediction of 
electricity use absent the curtailment and the actual load, much like day-matching baselines.  
Appendix E contains the mathematical expression of the regression models tested.  
 
Although regression models can measure demand reduction relatively accurately, they bring 
added complexities.  They are less transparent to non-statisticians and more complex to 
implement for operations and settlements.   
 
3.5.4 Estimation Methods with Control Groups 

Another way to estimate demand reductions is by using a control group of customers that is not 
curtailed during the event.  In essence, the electricity demand patterns by the group that was not 
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curtailed are used to infer what the usage patterns of the curtailment group would have been 
absent the curtailment.   
 
However, on its own, using a control group does not guarantee more accurate results.  A good 
control group has customers that, on average, look like and behave in the same manner as the 
customers whose AC loads were controlled except for the curtailment event.  To eliminate 
alternative explanations for differences in electricity use, it is critical that the only systematic 
difference between the two groups is the fact that one group had their AC units curtailed while 
the other group did not.  To put it differently, if two groups behave almost exactly the same 
during all hours of the year except for the hours when AC units were curtailed, it is reasonable to 
conclude the difference in electricity demand is due to the curtailment event.  
 
The best way to ensure there are no systematic differences between the two groups is to 
randomly assign customers to the curtailment and control groups and use large sample sizes.  
This approach is known as an experiment or a Randomized Control Trial.  It is widely regarded 
as the best evaluation method.  Because of random assignment, on average, both groups can be 
expected to have similar characteristics such as household size and to experience the same 
weather, economic conditions and occupancy patterns.  That is, random assignment of AC load 
control events eliminates alternative explanations for changes in demand by eliminating 
systematic differences between the two groups.  The only systematic difference between the two 
groups is whether or not they were curtailed. However, differences between the two groups can 
arise due to random variation in sampling.  With larger groups, it is less likely that substantive 
differences exist. 
 
Using control groups with random assignment has several benefits.  It ensures the demand 
reduction estimates are unbiased and precise, provided large samples are used.  More over the 
process is extremely easy to understand and allows the use of calculation methods that are highly 
transparent and simple to execute.  It does not need to rely on a complex mathematical model or 
rules for selecting match days.  In our assessment, the demand reductions were calculated in one 
of two ways:  
 

 A simple comparison of means: With this approach, for each time period, demand 
reductions are estimated as the difference between the group that did not have their AC 
loads curtailed and one that did.  

 A weather-matched difference-in-differences calculation: This approach is useful when 
sample sizes are smaller.  The demand reduction is calculated as the difference between 
the two groups, but then adjusted with one additional step.  We subtract out differences 
between the two groups during days without curtailments and similar weather.  This nets 
out differences that are irrelevant and mainly due to sampling variation. 

Figure 3-4 illustrates an example of calculating AC demand reductions with smart meter data, 
random assignment to operations and large sample sizes.  The example is based on the 2011 
SmartAC evaluation, which was still underway when this report was being written.  In the 
evaluation, customers were randomly assigned to 1 of 10 groups.  During each of nine test 
events, one of the randomly assigned groups was operated while the other nine groups acted as a 
control group.  During actual program events, 9 of the 10 randomly assigned groups would be 
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operated.  For the example day, a randomly assigned group of 10% of the devices, or 14,000 
devices, was activated for curtailment.  The remaining 90% or 124,000 devices acted as the 
control group and provided information about normal electricity use without the curtailment. 
 

Figure 3-4: Example of Using a Control Group to Estimate Demand Reductions 

 
 
Figure 3-4 shows actual metered loads for the two groups without any adjustments.  It illustrates 
the accuracy and simplicity of the approach.  Loads leading up to the event were identical for 
both groups and clearly diverged during the curtailment period.  The large sample sizes 
effectively eliminated almost all random sampling error, while the randomized assignment 
ensured both groups were identical except for the load curtailments.  
      
Not all utilities are able to measure AC demand reductions using random assignment with groups 
of similar magnitude, for reasons discussed below.  Even within a larger utility like PG&E, 
demand reduction measurements are sometimes required at a more localized level, reducing 
sample sizes.  Smaller sample sizes introduce the potential for differences due to random 
variation in the sampling – that is, it can introduce differences that are unrelated to curtailments.  
With smaller sample sizes a difference-in-differences calculation can remove these irrelevant 
discrepancies and improve both the accuracy of the results.   
 
Figure 3-5 illustrates the calculation using AC end-use data.  In the example, 600 units were 
sampled and 300 were randomly assigned to the curtailment group and 300 were assigned to act 
as a control group.  
 
The two groups have a clear difference in electricity use during non-event days and in the hours 
leading up to the event in the curtailment day.  This difference is entirely the result of random 
sampling and the smaller sample sizes.  Taking the simple difference between the two groups 
during the curtailment period clearly overestimates the demand reductions.  To correct this, the 
differences observed during the non-event days with similar weather are subtracted out.  In the 
example, the true demand reduction is 0.25 kW per AC unit.  Without the adjustment, using the 
control group produces demand reductions of 0.40 kW.  With the adjustment, the demand 
reduction estimate is 0.30 kW, a clear improvement.   
 
 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 4 7 10 13 16 19 22

kW

Hour Ending

 Large samples effectively 
eliminate sampling error

 Actual average loads for a 
treatment group and control 
group on an event day

Roughly 14,000 (10%) 
devices dispatched

Roughly 124,000 (90%) 
participant devices not

dispatched



 

 29

 
Figure 3-5: Example of Weather-matched Difference-in-Differences Calculation 

 

For many AC load control programs, it is not always feasible to implement randomly assigned 
control groups with large sample sizes.  The first consideration is load control device 
communications.  Newer AC load control programs such as PG&E's SmartAC typically use 
systems that can transmit cycling instructions to individual AC units.  For example, it is possible 
to instruct the load control device of a house to shed load and to instruct the load control devices 
at an adjacent house not to do so.  Older AC cycling programs such as SCE's often rely on one-
way communications where all units in a region respond to a radio signal.  This has practical 
implications.  For example, for a program like PG&E's SmartAC, it is possible to randomly 
assign the participants into 10 groups and withhold a group of over 14,000 accounts from being 
dispatched during each event, rotating the control group.  For a program without load control 
devices that can be directly addressed, this is not feasible.  To create a control group, they would 
need to install “placebo” or inactive load control devices for a subset of households.  The second 
consideration is costs.  With smart meters in place, the costs of deploying and using large 
samples with several thousand customers to estimate load reductions is dramatically lower.  The 
data also can be retrieved remotely and analyzed within days.  Without smart meters in place, 
there is no such luxury and sample sizes are a legitimate concern.  The ability to use extremely 
large sample sizes and ensure accurate representation of the population of interest are two of the 
most attractive features of smart meter household data.  Utilities that had not yet deployed smart 
meters would need to install data collection devices, adding a substantial cost per unit included in 
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the samples.  As a result, they would likely need to rely on substantially smaller samples of 
either household AC end-uses or households. 
 
3.6 Metrics for Assessing Accuracy 

Accuracy refers to how close a measurement is to the actual value.  The settlement alternatives 
produce estimates of the AC load control impacts.  Comparing them to the true impact values 
allows us to assess the accuracy of each settlement alternative.  Since AC load control programs 
aggregate tens and sometimes hundreds of thousands of the AC units, the focus is less on the 
accuracy of estimates for individual AC units or feeders and more on the overall accuracy of the 
results for the program and for larger zones in the electric grid.   
 
Because the demand reductions were simulated, the answer key was available and we could 
assess how close each of the measurements was to the right answer.  To standardize the 
comparison, we used metrics designed to assess if the measurement alternatives systematically 
over or under-reported demand reductions (bias) and metrics that summarized how close the 
measurements were to the true demand reductions (goodness-of-fit).  An accurate estimator 
produces results that are on average unbiased and minimize amount of error for individual 
periods (i.e., it has a high goodness-of-fit).   
 
Table 3-3 summarizes the metrics for bias and goodness-of-fit used to assess the different 
measurement alternatives.  It includes a brief description and the corresponding 
mathematical equations.   
 
Metrics of bias indicate whether the demand reduction measurements tend to be 
disproportionately positive or negative.  In other words, they indicate the extent to which the 
measurement alternatives tend to over or underestimate the true demand reduction.  The bias can 
be reported in an absolute basis by computing the mean error or on a percentage basis by 
reporting the mean percentage error.  In this report, the comparison of bias are made using the 
mean percentage error (MPE) because it allows for a direct comparison of the results from 
feeder, household and AC end-use data since the metric is standardized.  For example, an MPE 
of 5% indicates that the measurement alternative, on average, overestimates demand reductions 
by 5% and an MPE of -10% indicates the baseline on average underestimates demand reductions 
by that percentage. 
 
A number of goodness-of-fit statistics are summarized.  For each of the metrics selected, lower 
values indicate lower amounts of error (or higher accuracy).  In comparing different 
measurement alternatives, however, normalized metrics such as the mean absolute percentage 
error, the normalized root mean squared error, and the coefficient of alienation are favored 
because they allow for comparisons across the different data sources. 
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Table 3-3: Metrics for Assessing Bias and Goodness-of-Fit 

Type of 
Metric 

Metric Description Mathematical Expression 

Bias 

Mean Error (ME) 

The mean error (ME) indicates whether on average the errors tend to be 
disproportionately positive or negative.  This metric is presented in the same units as 
the original and is not normalized for comparison for different types of data. 

  

1
 

 

Mean Percentage 
Error (MPE) 

The mean percentage error (MPE) indicates the percentage by which the 
measurement, on average, tends to over or underestimate the true 
demand reduction.  

1∑
 

 

Goodness-
of-Fit 

Mean Absolute Error 
(MAE) 

The mean absolute error (MAE) reflects the average error, regardless of positive or 
negative direction, and is in the same units as the original data.  It does not weight 
larger error more so than smaller errors.  

 

1
| | 

Mean Absolute 
Percentage Error 
(MAPE) 

The mean absolute percentage error (MAPE) is a measure of the relative magnitude 
of errors across event days, regardless of positive or negative direction.  It is 
normalized allowing comparison of results across different data sources.  

 

1
 

Root Mean Squared 
Error (RMSE) 

The root mean squared error (RMSE) is sensitive to larger errors.  The squaring 
process gives disproportionate weight to very large errors, which are then 
recalibrated by taking the square root.  This metric is not normalized and can only be 
compared between models whose errors are measured in the same units.  

 

1
 

CV(RMSE) 
This metric normalizes the RMSE by dividing it by the average of the actual demand 
reduction.    

 

 

Pearson's Chi-
Squared 

This test is applicable to both continuous and discrete data.  For each observation, 
the squared difference between demand reduction measurement and the actual 
demand reduction (the expected value) is divided by the actual demand reduction. 
These values are subsequently summed.   

 

 

Coefficient of 
Alienation 

The coefficient of alienation measures the amount of variation that is not explained 
(or accounted for) by the demand reduction estimator.  Values closer to zero indicate 
good explanatory power. 
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In making that comparison, it is important to understand if the settlement alternative is unbiased 
on average and accurate for individual curtailment hours.  A settlement alternative that produces 
correct measurements on average can perform poorly for individual events.  This occurs if the 
errors cancel each other out.  To better understand this, a simplified example is useful.  Assume 
there are only two event days and the true impacts for each are 0.2 kW and 0.6 kW per 
household.  Two settlement options can both produce the right average answer, 0.4 kW, but 
perform differently for individual event days.  An option that estimates 0.4 kW for the first and 
second event is clearly inferior to one that accurately estimates the 0.2 kW and 0.6 kW impacts 
for the two events – even though both estimate the average event impact correctly. 
 
3.7 Implications of Sample Sizes for Measurement Error 

AC load control programs aggregate many tens or hundreds of thousands of small resources that 
are dispersed both across distribution circuit feeders and within them.  As a result, metering each 
unit is impractical due to sheer number of participants and the use of samples is recommended. 
 
The use of samples has implications for the accuracy of the demand reduction measurements.  
Smaller samples can introduce error from random variation – known as sampling error.  Figure 
3-6 illustrates sampling variation.  It shows the hourly load shape on September 2, 2010 for 10 
random samples of 300 households and compares them to the population hourly load shape.24  
Some of the samples reflect the population load shape extremely well, while other load shapes 
noticeably over or underestimate it. 
 

Figure 3-6: Example of Sampling Error 

 

The random sampling process is expected to reflect the population, if repeated over and over.  
However, in practice, samples are typically only drawn once.  As sample sizes increase, the 
variation in sample draws decreases and precision increases.  With a sample of 300 customers, 

                                                 
24 Except for sampling error, these random samples are representative of AC load control program participants. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 3 6 9 12 15 18 21 24

Hour Ending

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Sample 10

Population



 

33 
 

the electric loads used for the analysis were within ±11.4% of the population values 95% of the 
time.  With samples of 500, 1,000 and 2,000 customers, the electric loads were respectively 
within ±8.8%, ±6.2 and ±4.4% of the population values 95% of the time.25  The precision of 
samples does not increase in proportion to increase in sample sizes.  For example, doubling the 
sample size from 500 to 1,000 does not lead to a twofold increase in precision.  In general, the 
first hundred sample points decrease the margin of error the most. 
 
Sampling error can play a larger role when demand reductions estimates rely on control groups 
than it does when the reductions are calculated based on usage in prior non-curtailment day 
(within-subject methods).  To illustrate, assume the control group sample drawn happens to have 
+5% sampling error and, for simplicity, that the curtailment group has no sampling error.  The 
true population load absent curtailment for the population happens to be 1.50 kW per AC unit 
and the true demand reduction is 0.40 kW per AC unit.  The control group, however, produces a 
counterfactual of 1.58 kW and an estimated demand reduction of 0.48 kW (1.58-1.10 kW) 
instead of the true reduction of 0.40 kW.  With the control group, the 5% sampling error in the 
control group, leads to a 20% error in the demand reduction measurement in the example.  
 
With within-subject methods, the estimate is not affected by a second sample such as a control 
group.  This is because they rely on electricity use patterns during days when the AC loads are 
not curtailed to estimate the demand reduction.  To illustrate with the above example, if the 
sample of the curtailment group happens to have +5% sampling error, the demand reduction for 
the sample would be 0.42 kW instead of the population true value of 0.40 kW.  But the sampling 
error would also lead to an upward bias on non-curtailment days of roughly the same amount.  In 
effect, sampling error tends to affect demand reduction estimates less with within-subject 
methods.  Appendix G contains a table showing how the overall margin of error varies as a 
function of both sampling error and estimation error.  
 
To incorporate the effect of sampling error, the demand reduction estimation process was 
replicated 100 times using 100 different randomly drawn samples for methods that relied on 
control groups and for the impact estimation tables.  Appendix H provides more detail on the 
process used to incorporate sampling error.  
 

                                                 
 
25 The margin of error calculation takes into account the variability of individual observation as measured by the coefficient of 
variation (the average divided by the standard deviation), which can vary across jurisdictions and hours of day.  For the data used, 
the mean over peak period (2 PM to 6 PM) was 2.602 kW and the standard deviation was 2.610, producing a coefficient of 
variation near 1.  The 95% margin of error is calculated by the following formula, where 1.96 is the critical value with a 95% 
interval and the FPC is the finite population correction. 
 

1.96 · /√  
·  
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4. Accuracy of Measurement Alternatives 

In choosing settlement alternatives the tradeoffs between accuracy, transparency, cost and 
integration into existing systems needs to be understood.  For a settlement alternative to merit 
more extensive consideration, it needs to meet a basic threshold of accuracy.  The demand 
reduction measurement used for settlement need to produce results that do not have a tendency to 
over or underestimate the demand reduction and that produce precise results.  
 
This section summarizes the accuracy of the measurement alternatives tested.  In total, we tested 
10 calculation methods using feeder data, household data and end-use AC data.  Each 
combination of data source and calculation method is considered as a separate measurement 
alternative.  The calculation methods tested include both within and between-subject estimators 
and are detailed in Section 3.5.  All of the results are reported on a per AC load control 
household basis to allow for comparison of the different data sources. 
 
While highly accurate results are desirable, there is often a tradeoff between simplicity and 
incremental accuracy.  In order to help gauge the benefit of more complex and costly 
approaches, each of the measurement alternatives are compared with one of the simplest and 
least technical approaches – a set of tables containing pre-calculated demand reduction estimates.  
The tables allow users to look up the demand reduction per device based on the daily maximum 
temperature, geographic region and hour of day.  
 
The remainder of this section is structured as follows.  First, the results from using simple impact 
estimate tables are presented to serve as the benchmark.  This is followed by the results of the 
regression, day-matching and weather-matching baselines are presented for each of the data 
sources – individual AC unit data, aggregated AC data, household data and feeder level data.  
Finally, the results from approaches that rely on using a control group are presented.  These 
results are presented for individual AC unit and household data.  The section concludes with a 
summary of the key findings.  
 
4.1 Accuracy with Impact Estimate Tables 

Impact estimate tables are the least technical approach and serve as the benchmark for assessing 
more sophisticated methods for estimating AC load control impacts.  They are essentially a 
detailed set of lookup tables with deemed savings.  The user looks up the relevant climate region, 
the temperature conditions for the day and the hour of day for an estimate of the load reduction 
per AC units; they then multiply the values times the number of units curtailed in each relevant 
geographic region to estimate the aggregate impacts.  
 
Impact estimate tables are based on actual AC electricity use patterns and historical percent load 
reductions under specific, discrete temperature conditions, in specific geographic areas.  They 
are a simple way to predict or estimate the demand reduction for settlement and are typically 
produced on a per AC unit basis so they can be used to estimate demand reductions for localized 
demand reductions or partial dispatches of the AC load control reduction capability.  A sample of 
the impact estimate tables is included in Appendix F.   
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For example, based on historical data, the average electricity use for a Central Valley residential 
AC unit is 1.2 kW between 3 PM and 4 PM when the daily maximum temperature is between 
95°F and 100°F.  If, historically, AC use drops by 35% under those temperatures, based on the 
decision matrix, we would estimate that impacts for a similar day are 0.42 kW per AC unit with 
50% cycling  (1.2 kW x 34%).  If 20,000 AC units were controlled in the region, the aggregate 
reduction would be 8.4 MW.   
 
In practice, the true counterfactual and the true percent load reduction may differ from the 
estimates produced using the tables.  This leads to error for individual curtailment events.  
However, if the tables are accurate they should produce estimates close to the true values and 
should lead to accurate payment of settlement over the course of the summer.  The accuracy of 
the tables also depends in part on the magnitude of the sample(s) used to produce the tables and 
degree of sampler error.  Using impact estimate tables is similar to “deemed savings” estimates 
commonly used for energy efficiency programs.  While not complex, the approach is practical 
and low cost.  As a result, it serves as a useful benchmark for assessing how much value is added 
by using more complex baseline calculation approaches.   
 
Table 4-1 summarizes whether or not the tables over or under estimated the demand reduction 
for the population.  As discussed in Appendix G, the tables and the predictions were estimated 
100 times using different sample sizes to reflect the uncertainty from the sampling process.  The 
table shows the distribution across the samples of per household load without load control, the 
true population impacts, the predicted impacts and the bias and goodness-of-fit metrics 
introduced in Section 3.6.  In each case, the table presents the distribution of these metrics across 
all 100 sample draws or simulations.  In practice, a sample is typically only selected once per 
year.  As a result, the tables indicate the likelihood that a single sample will yield different levels 
of accuracy.  
 
The tables produce relatively accurate estimates of the true demand reductions over the summer.  
This is reflected by the mean percent error, a metric for bias, which ranges from -0.1% to -0.4% 
for the average sample, meaning that it does not over or underestimate the true demand 
reductions.  However, since samples can only be drawn once, the potential for sampling error is 
largest with smaller sample sizes.  As the underlying sample sizes increase, the potential for 
using a sample that is biased decreases substantially.  In particular, with a larger sample size 
there is less uncertainty regarding unperturbed AC loads and, by connection, more accurate load 
reduction estimates.  With the relatively small sample size of 300 customers, in 90% of the 
samples drawn the mean percent error for the average event was between -6.7% and 7.8%.  To 
put this in context, if the true impact for the average event were 0.210 kW per household, 90% of 
the sample draws would produce estimates between 0.196 kW and 0.226 kW per household.  
This improves substantially with larger sample sizes.  With a sample size of 1,000 AC units, 
90% of the impact estimates had a mean percent error between -3.7% and 4.0%.  
 
However, as will be detailed later in this section, while the tables do not over or underestimate 
demand reductions by much over the course of the summer, they are less accurate for individual 
event days.  This is can be seen by the goodness-of-fit metrics from the tables to other 
measurement alternatives.   For an individual event, the tables produce, on average, errors 
between 30% and 40%, but because the errors are not systematically biased they cancel each 
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other out.  The goodness-of-fit statistics do not improve much as sample size increase.  This has 
implications for its potential application for operations and settlement.  While a simple table can 
be used for settlement, a system operator may care if 50 or 60 MW of demand reductions is 
available for operations. 
 

Table 4-1: Accuracy Metrics for Impact Estimate Tables 
Sample 

Size 
Metric Average 

Std. 
Deviation

Distribution Percentiles 

5th 25th Median 75th 95th 

100 

Impacts 
Pop. average true impact 0.21 0.00 0.21 0.21 0.21 0.21 0.21 

Impact estimate 0.21 0.02 0.18 0.19 0.20 0.22 0.24 

Bias 
Baseline percent error 2.3% 9.7% -10.5% -5.0% 0.6% 8.3% 19.6% 

MPE (Demand Reduction) -0.1% 9.3% -12.5% -7.3% -1.8% 6.0% 17.0% 

Goodness 
of Fit 

MAE 0.07 0.01 0.06 0.07 0.07 0.08 0.09 

MAPE 36.9% 5.7% 31.0% 32.6% 35.2% 39.4% 48.0% 

CVRMSE 0.43 0.05 0.37 0.39 0.41 0.44 0.52 

Coefficient of alienation 1.22 0.30 0.92 1.03 1.14 1.30 1.82 

300 

Impacts 
Pop. average true impact 0.21 0.00 0.21 0.21 0.21 0.21 0.21 

Impact estimate 0.21 0.01 0.19 0.20 0.21 0.21 0.22 

Bias 
Baseline percent error 2.8% 4.2% -4.0% 0.3% 2.6% 5.4% 10.9% 

MPE (Demand Reduction) 0.4% 4.1% -6.7% -2.1% 0.2% 2.7% 7.8% 

Goodness 
of Fit 

MAE 0.07 0.01 0.07 0.07 0.07 0.08 0.08 

MAPE 36.5% 2.8% 32.2% 34.7% 36.2% 38.2% 41.4% 

CVRMSE 0.42 0.02 0.38 0.40 0.41 0.43 0.46 

Coefficient of alienation 1.15 0.13 0.98 1.06 1.13 1.22 1.39 

500 

Impacts 
Pop. average true impact 0.21 0.00 0.21 0.21 0.21 0.21 0.21 

Impact estimate 0.21 0.01 0.19 0.20 0.21 0.21 0.22 

Bias 
Baseline percent error 2.5% 3.6% -3.2% -0.1% 2.7% 4.6% 9.3% 

MPE (Demand Reduction) 0.1% 3.5% -5.5% -2.8% 0.1% 2.3% 6.7% 

Goodness 
of Fit 

MAE 0.07 0.00 0.07 0.07 0.07 0.07 0.08 

MAPE 36.3% 2.1% 33.2% 35.0% 36.1% 37.4% 40.4% 

CVRMSE 0.41 0.02 0.39 0.41 0.41 0.42 0.44 

Coefficient of alienation 1.14 0.08 1.01 1.09 1.14 1.18 1.30 

1000 

Impacts 
Pop. average true impact 0.21 0.00 0.21 0.21 0.21 0.21 0.21 

Impact estimate 0.21 0.01 0.20 0.20 0.20 0.21 0.21 

Bias 
Baseline percent error 2.4% 2.4% -1.5% 0.6% 2.2% 3.9% 6.6% 

MPE (Demand Reduction) 0.0% 2.3% -3.7% -1.7% -0.2% 1.5% 4.0% 

Goodness 
of Fit 

MAE 0.07 0.00 0.07 0.07 0.07 0.07 0.08 

MAPE 36.2% 1.4% 33.8% 35.3% 36.0% 36.8% 38.9% 

CVRMSE 0.41 0.01 0.40 0.41 0.41 0.42 0.43 

Coefficient of alienation 1.13 0.06 1.05 1.10 1.13 1.17 1.25 

2000 

Impacts 
Pop. average true impact 0.21 0.00 0.21 0.21 0.21 0.21 0.21 

Impact estimate 0.21 0.00 0.20 0.20 0.20 0.21 0.21 

Bias 
Baseline percent error 2.4% 1.4% 0.1% 1.4% 2.2% 3.5% 4.7% 

MPE (Demand Reduction) 0.0% 1.4% -2.4% -0.9% -0.2% 1.0% 2.3% 

Goodness 
of Fit 

MAE 0.07 0.00 0.07 0.07 0.07 0.07 0.08 

MAPE 36.1% 0.9% 34.9% 35.5% 36.1% 36.6% 37.8% 

CVRMSE 0.41 0.01 0.40 0.41 0.41 0.42 0.43 

Coefficient of alienation 1.13 0.04 1.07 1.10 1.12 1.15 1.20 
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4.2 Accuracy for Within-subject Estimators 

As noted earlier, within-subject estimators use electricity use patterns during days when AC units 
are not controlled to estimate the counterfactual and demand reduction in days when units are 
controlled.  One set of days for a customer (or group) is used to predict load patterns for another 
set of days.  This is the most widely used approach to estimate impacts for DR programs.  Not 
surprisingly, to date, discussions on settlement of DR in electricity markets have focused almost 
exclusively on day-matching baselines and other algorithms to establish what electricity use 
would have been in the absence of the demand reduction.  This is an outgrowth of the fact that 
demand response programs for large C&I customers were the first type of DR integrated into 
electricity markets.  In practice, this class of estimators includes regression models that do not 
make use of a control group and all day-matching and weather-matching baselines.  In total, 
eight different estimators are analyzed in this section.  Three are day-matching baseline, one is a 
weather-matching baseline and four are regression-based estimates.  
 
Each of these estimators was applied to individual AC end-use data, aggregated AC end-use 
data, household data and distribution feeder circuit data.  Because the underlying data affects 
accuracy, the results are presented by source. 
 
4.2.1 Individual Air Conditioner End-use Data 

With AC end-use data, the percent load reduction – the "signal" – is largest compared to the 
background noise.  There are no other participant end-uses and the data does not include non-
participants.  As a result, a priori, one would anticipate that all things equal the results of the AC 
end-use data would be more accurate.  However, there are two defining features of AC end-use 
data that affect the accuracy of the results.  First, AC units are highly weather sensitive and quite 
often not in operation.  As a result, the day-matching baselines often require substantial 
adjustments based on the measured pre-event data.  Because the AC use during the pre-event 
period can be small or zero, the ratio for in-day adjustment can become very volatile.  Second, 
data collection of AC end-use data is a high cost proposition and in practice leads to smaller 
samples than for other data sources.   
 
Table 4-2 summarizes the results for the average event for each regression, day-matching and 
weather-matching settlement alternative.  It shows the extent to which the measurement options 
over or underestimates the baseline and, more importantly, the demand reductions.  In other 
words, the table summarizes the degree of bias, if any, for each measurement alternative.  It also 
highlights the fact that baseline and demand reductions are in fact different.  The results are 
presented on a per household basis.  In other words, during the average simulated event, the 
average household used 0.78 kW of AC load and controlling it produced 0.20 kW of 
load reduction.  
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Table 4-2: Accuracy by Settlement Alternative for Average Event 
 Individual Air Conditioner Data 

Method Calculation 

Actual 
load 

without 
DR 

Predicted 
load 

without 
DR 

Mean % 
Error 

Actual 
Impact 

Predicted 
Impact 

Mean % 
Error 

Day 
Matching 

1.  10-in-10 baseline with 20% in-
day adjustment cap 

0.78 0.51 -35.0% 0.20 -0.07 -135.9%

2.  10-in-10 baseline with uncapped 
in-day adjustment 

0.78 0.97 24.2% 0.20 0.38 93.7% 

3.  Top 3-in-10 baseline with 
uncapped in-day adjustment 

0.78 0.97 24.8% 0.20 0.39 95.9% 

Weather 
Matching 

4. Weather baseline with in-day 
adjustment 

0.78 0.89 14.3% 0.20 0.31 55.4% 

Regression 

5. With treatment variables and 
lags or leads 

0.78 0.77 -1.3% 0.20 0.20 0.8% 

6.  With treatment variables and a 
day lag variable 

0.78 0.78 0.5% 0.20 0.20 2.3% 

7.  With treatment variables  and 
pre and post event hour 
variables  

0.78 0.79 1.9% 0.20 0.21 6.3% 

8.  With no treatment variables and 
with pre and post event hour 
variables 

0.78 0.77 -0.7% 0.20 0.19 -3.4% 

 
The results for day and weather-matching methods tend to over or underestimate actual demand 
reductions by a substantial amount.  They produce inaccurate estimates of both the baseline and 
of the impacts.  This is due to the nature of AC operations and in-day adjustments.26  On a 
minute-by-minute basis AC units are either on or off even on hot days.  As the temperature 
within a home rises above the thermostat setting, the AC unit turns on and transfers heat from 
inside a home to the outside.  In practice, however, several days and weeks can pass by without a 
heat wave.  As a result, any uncapped in-day adjustment using individual AC data can be highly 
volatile because the adjustment is based on the ratio of actual use during pre-event days and 
baseline.  If the AC was off for several days this leads to a small value in the denominator – 
dividing by a very small number produces a large value and large adjustments.  The reverse is 
also true, if an AC unit was not in operation during pre-event hours, the actual use value is low, 
leading to a large downward adjustment.  Capping adjustments doesn't produce more accurate 
results because AC use on hotter days is often double or triple the use in prior days and weeks.  
If baseline methods with in-day adjustments are to be employed with AC end-use data, it is 
necessary to aggregate across the AC units.  
 
In comparison, all the regression models tested produced highly accurate baseline and impact 
estimates for the average event.  The estimated impacts for the average event range from 0.19 to 
0.21 kW per SmartAC household and match closely to the actual impact of 0.20 kW.  
Differences between the regression model results are very similar, but the most accurate method 

                                                 
26 Appendix D provides a detailed example of how in-day adjustments are applied.  
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was the simplest and relies exclusively on external factors such as weather to produce the 
estimates.  It models AC use and impacts as a function of day characteristics, hour and 
temperatures and does not predict AC use as a function of AC use in the same day or the prior 
day.  As a result, it can also be used to forecast the AC load reduction capability under different 
weather conditions. 
 
While lack of bias in the measurements is critical, it is not the only criteria for accuracy.  It is 
possible for a settlement alternative method to be inaccurate for individual curtailment hours but 
is accurate on average because the errors cancel each other out.    
 
Figure 4-1 compares the actual impacts per household impacts by event day with the predictions 
from the two most accurate settlement alternatives using AC end-use data, the first and second 
regression models.  Both models perform relatively well across most curtailment events, with a 
few exceptions. 
 

Figure 4-1: Comparison of Actual and Predicted Values by Date 
Individual AC End-use Data 

 

Table 4-3 compares the actual and estimated demand reductions for each curtailment event and 
each of the within-subject measurement alternatives.  It also summarizes several goodness-of-fit 
statistics that describes how close the measurements were to actual values.  For all of the 
goodness-of-fit metrics in the table, a lower value indicates a higher degree of accuracy.  The 
most intuitive metric is the mean absolute percentage error, which describes the average 
magnitude of the errors, but does not allow negative and positive errors to cancel each other out. 
While the most accurate method does not over or under predict overall curtailment hours, it 
produces a 21% average percent error for individual curtailment hours. 
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Table 4-3: Accuracy and Goodness-of-Fit of Settlement Alternatives  
for Each Simulated Event Individual AC End-use Data 

Date 
Proxy 
Event 
Date 

Daily 
Max 

Temp  
(°F) 

Actual 
Impacts 

Predicted Impacts 

Day Matching 
Weather 
Matching

Regression 

1 2 3 1 2 3 4 

07/13/09 90.0 94.3 0.09 0.06 0.11 0.17 0.01 0.14 0.14 0.16 0.11 

07/15/09 96.4 97.0 0.27 -0.34 0.77 0.51 0.51 0.28 0.28 0.31 0.31 

07/16/09 98.1 98.2 0.25 -0.32 0.14 0.10 0.46 0.36 0.38 0.37 0.35 

07/27/09 81.9 97.6 0.23 -0.20 0.24 0.22 0.24 0.16 0.15 0.13 0.05 

08/13/09 89.3 91.4 0.21 -0.19 0.37 0.31 0.37 0.12 0.12 0.13 0.14 

08/18/09 91.6 92.5 0.36 0.09 0.30 0.30 0.27 0.34 0.36 0.33 0.30 

08/21/09 80.1 97.3 0.16 -0.07 0.13 0.20 0.07 0.18 0.17 0.18 0.06 

08/26/09 87.1 90.7 0.09 0.17 0.02 0.08 0.13 0.13 0.13 0.15 0.17 

08/28/09 91.8 98.1 0.09 -0.03 0.14 0.14 0.04 0.11 0.11 0.13 0.15 

09/02/09 96.0 97.3 0.26 -0.13 0.64 0.51 0.16 0.27 0.27 0.29 0.26 

09/03/09 76.8 97.2 0.20 0.04 0.18 0.20 0.26 0.14 0.14 0.14 0.18 

09/11/09 80.8 96.4 0.20 -0.02 0.31 0.25 0.19 0.22 0.22 0.24 0.19 

09/17/09 87.5 90.2 0.14 0.05 1.83 2.56 1.50 0.13 0.12 0.12 0.13 

09/18/09 79.4 96.6 0.19 0.00 0.43 0.37 0.23 0.20 0.20 0.21 0.19 

09/23/09 88.0 94.0 0.14 -0.21 0.32 0.40 0.35 0.11 0.11 0.11 0.07 

Average 87.7 95.3 0.20 -0.07 0.38 0.39 0.31 0.20 0.20 0.21 0.19 

Bias Mean percent error -135.9% 93.7% 95.9% 55.4% 0.8% 2.3% 6.3% -3.4% 

Goodness 
of Fit 

Mean absolute error  
(MAE) 

0.30 0.23 0.22 0.15 0.04 0.04 0.05 0.05 

Mean absolute percent 
error (MAPE) 

141.3% 128.8% 145.7% 99.3% 23.3% 25.6% 30.0% 31.0% 

Root mean squared error 
(RMSE) 

0.36 0.44 0.53 0.31 0.05 0.06 0.06 0.07 

Normalized RMSE 
(CVRMSE) 

1.82 2.24 2.72 1.64 0.26 0.29 0.30 0.35 

Coefficient of alienation 
(CoA) 

19.03 28.70 42.25 17.09 0.44 0.49 0.59 0.77 

Chi-squared 11.14 25.74 44.86 14.74 0.28 0.34 0.39 0.53 
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4.2.2 Aggregated Air Conditioner End-use Data  

Aggregated AC data does not include non-participants or other end-uses and, as a result, the ratio 
of the signal – the load reduction – to the background noise is larger.  When aggregated, the AC 
end-use data is much more accurate for day and weather-matching baselines.  Zero or very small 
values are less likely with aggregated AC data because it is less likely that all units are off during 
the days prior to an event or during pre-event periods.  This reduces the volatility of the in-day 
ratio adjustments and produces more accurate estimates.  On other hand, impact estimates from 
regression models are generally less accurate with aggregated rather than individual AC data, 
although they are still highly accurate. 
 
Table 4-4 summarizes the degree to which each regression, day-matching and weather-matching 
settlement alternative over or underestimated the demand reduction over 15 curtailment events.  
It shows if the baseline and impact estimates are biased.  The results are presented on a per 
household basis.   
 

Table 4-4: Accuracy by Settlement Alternative for  
Average Event Aggregate Air Conditioner Data 

Method Calculation 
Actual load 
without DR

Predicted 
load 

without DR

Mean % 
Error 

Actual 
Impact 

Predicted 
Impact 

Mean % 
Error 

Day Matching 

1.  10-in-10 baseline with 20% 
in-day adjustment cap 

0.78 0.57 -26.8% 0.20 -0.01 -105.3% 

2.  10-in-10 baseline with 
uncapped in-day adjustment

0.78 0.81 3.7% 0.20 0.23 14.4% 

3.  Top 3-in-10 baseline with 
uncapped in-day adjustment

0.78 0.80 2.4% 0.20 0.22 9.2% 

Weather 
Matching 

4. Weather baseline with in-day 
adjustment 

0.78 0.77 -0.8% 0.20 0.19 -3.3% 

Regression 

5. With treatment variables and 
lags or leads 

0.78 0.74 -4.8% 0.20 0.20 2.7% 

6.  With treatment variables and 
a day lag variable 

0.78 0.76 -1.6% 0.20 0.21 5.0% 

7.  With treatment variables  
and pre and post event hour 
variables  

0.78 0.79 1.9% 0.20 0.23 14.6% 

8.  With no treatment variables 
and with pre and post event 
hour variables 

0.78 0.77 -0.4% 0.20 0.19 -1.7% 

 
While the underlying data is identical, aggregating the AC end-use data produces marked 
improvements for day and weather-matching baselines in comparison to relying on individual 
AC end-use data.  The uncapped day and weather-matching baseline estimates produce mean 
percent errors ranging from -3.3% to 14.4%.  This is a substantial improvement over using 
individual AC data which, by comparison, produced mean percent errors ranging from 55.4% to 
95.9% for the same baseline methods.  However, the 10-in-10 day-matching baseline with the 
20% adjustment cap still performs rather poorly.  On average, it reports no demand reductions 
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when in fact the loads dropped by 0.20 kW per household.  Simply put, the 20% cap on in-day 
adjustments is too stringent for residential accounts because AC electricity use is highly 
weather sensitive. 
 
Despite the improvement in day and weather-matching baselines, as a whole, the 10-in-10 
baseline with or without a cap on in-day adjustments still produced the least accurate impacts.  
The three most accurate settlement alternatives were the weather-matching baselines and 
Regressions 1 and 4.  All of them, on average, produce measurement that, on average, over or 
underestimate by less than 3.5%.  To put this in context, they produced impact estimates between 
0.192 kW to 0.203 kW per household for the average event, which compare rather well to the 
true impacts of 0.198 kW per household.   
 
Figure 4-2 compares the estimates from the three alternatives with the least bias to the actual 
demand reductions per household by curtailment event.   
 

Figure 4-2: Comparison of Actual and Predicted Values by Date Aggregated AC End-use Data 

 
 
While the weather-matching baseline does not over or underestimate on average, it leads to 
substantial errors on specific curtailment events.  For example, the impacts for August 13, 
September 2 and September 23 are 49% too high, 48% too low and 114% too high, respectively.  
This highlights the need to systematically assess not only the degree of bias but the how well it 
predicts for individual curtailment periods. 
 
Table 4-5 compares actual and predicted values for all of the within-subject settlement 
alternatives tested using aggregated AC data.  It also shows the metrics for bias and goodness-of-
fit introduced in Section 3.6.  Regression Model 4 provides the best fit to actual impacts and least 
amount of error across events.  The accuracy metrics are similar across event days for Regression 
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1.  However, the weather-matching baseline is unbiased and is less accurate than the other 
two options.  
 

Table 4-5: Accuracy and Goodness-of-Fit of Settlement Alternatives  
for Each Simulated Event Aggregate AC End-use Data 

Date 
Daily Max 
Temp  (°F) 

Actual 
Impacts 

Predicted Impacts 

Day Matching 
Weather 
Matching 

Regression 

1 2 3 1 2 3 4 

07/13/09 94.3 0.09 0.09 0.02 0.00 0.04 0.13 0.14 0.14 0.09 

07/15/09 97.0 0.27 -0.14 0.52 0.46 0.31 0.26 0.26 0.31 0.28 

07/16/09 98.2 0.25 -0.04 0.33 0.26 0.30 0.34 0.39 0.38 0.29 

07/27/09 97.6 0.23 -0.06 0.26 0.31 0.23 0.17 0.18 0.21 0.16 

08/13/09 91.4 0.21 -0.12 0.28 0.29 0.31 0.13 0.14 0.15 0.19 

08/18/09 92.5 0.36 0.19 0.31 0.25 0.31 0.32 0.35 0.34 0.30 

08/21/09 97.3 0.16 -0.04 0.16 0.16 0.13 0.22 0.20 0.24 0.11 

08/26/09 90.7 0.09 0.16 0.05 0.04 0.06 0.13 0.13 0.15 0.16 

08/28/09 98.1 0.09 0.00 0.06 0.08 0.02 0.11 0.11 0.11 0.14 

09/02/09 97.3 0.26 -0.03 0.33 0.31 0.14 0.25 0.25 0.30 0.27 

09/03/09 97.2 0.20 0.05 0.20 0.21 0.21 0.14 0.14 0.15 0.18 

09/11/09 96.4 0.20 -0.02 0.16 0.16 0.17 0.24 0.23 0.26 0.20 

09/17/09 90.2 0.14 0.01 0.12 0.16 0.16 0.13 0.13 0.13 0.10 

09/18/09 96.6 0.19 -0.02 0.17 0.17 0.18 0.21 0.21 0.22 0.20 

09/23/09 94.0 0.14 -0.24 0.22 0.23 0.30 0.14 0.13 0.14 0.06 

Average 95.5 0.20 -0.01 0.23 0.22 0.19 0.20 0.21 0.23 0.19 

Bias 
Mean percent error 

(MPE) 
-105.3% 14.4% 9.2% -3.3% 2.7% 5.0% 14.6% -1.7% 

Goodness 
of Fit 

Mean absolute error 
(MAE) 

0.22 0.06 0.06 0.05 0.04 0.04 0.05 0.04 

Mean absolute 
percent error (MAPE) 

111.3% 31.8% 30.6% 28.5% 23.7% 25.2% 29.5% 23.6% 

Root mean squared 
error (RMSE) 

0.25 0.10 0.09 0.07 0.05 0.06 0.06 0.04 

Normalized RMSE 
(CVRMSE) 

1.26 0.50 0.43 0.35 0.26 0.29 0.31 0.22 

Coefficient of 
alienation (CoA) 

10.79 1.70 1.27 0.82 0.46 0.58 0.66 0.33 

Chi-squared 6.10 0.82 0.68 0.53 0.29 0.35 0.43 0.28 
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4.2.3 Household Data  

In comparison to the AC end-use data, household data includes several other end-uses and has 
more background noise from which the signal – the AC control load reductions – must be 
detected.  In hotter days, the amount of AC load is a high proportion of overall household 
electricity demand.  In cooler days, it is a small share of the overall household electricity 
demand, making it more difficult to detect AC control impacts from the background noise.  
 
For the analysis, the summer 2010 data was sampled for participants in 204 randomly selected 
feeders.27  Within each feeder, if more than 100 households on the feeder were enrolled in 
SmartAC, smart meter data from a randomly selected group of 100 participating households was 
employed.  If there were less than 100 participants in a feeder, all SmartAC household with 
smart meter data were sampled.  Because at the time of analysis, the PG&E smart meter 
deployment was not fully complete, a total of 132 feeders representing 88.5% of the SmartAC 
population were employed.  Each of these SmartAC households had smart meter data for the 
entire 2010 summer (May to October) and their data was aggregated by feeder.  This approach 
was selected to enable comparison for the same feeders between smart meter and feeder data.    
 

Table 4-6: Accuracy by Settlement Alternative for Average Event  Household Data 

Method Calculation 

Actual 
load 

without 
DR 

Predicted 
load 

without 
DR 

Mean % 
Error 

Actual 
Impact 

Predicted 
Impact 

Mean % 
Error 

Day 
Matching 

1.  10-in-10 baseline with 20% in-
day adjustment cap 

2.22 1.94 -12.6% 0.23 -0.05 -122.7%

2.  10-in-10 baseline with 
uncapped in-day adjustment 

2.22 2.14 -3.7% 0.23 0.15 -35.9% 

3.  Top 3-in-10 baseline with 
uncapped in-day adjustment 

2.22 2.19 -1.1% 0.23 0.20 -10.8% 

Weather 
Matching 

4. Weather baseline with in-day 
adjustment 

2.22 2.20 -0.6% 0.23 0.21 -5.8% 

Regression 

5. With treatment variables and 
lags or leads 

2.22 2.14 -3.6% 0.23 0.23 0.2% 

6.  With treatment variables and a 
day lag variable 

2.22 2.20 -0.7% 0.23 0.25 11.6% 

7.  With treatment variables  and 
pre and post event hour 
variables  

2.22 2.22 0.3% 0.23 0.26 13.5% 

8.  With no treatment variables 
and with pre and post event 
hour variables 

2.22 2.20 -0.8% 0.23 0.21 -7.7% 

 

                                                 
27 The share of customers with smart meters in 2009 was far smaller and, as a result, the analysis of AC end-use data is based on 
2009 data while the analysis of household and feeder data relies on 2010 data.  
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Table 4-6 summarizes the degree to which each regression, day-matching and weather-matching 
settlement alternative over or under predicts the true demand reductions on average.  It reflects 
whether the measurement option is biased.  As in prior tables, the results are presented on a per-
household basis.  On average, Regression Model 1 and weather-adjusted baselines produce 
results that least over or under predict demand reductions.  The 10-in-10 day-matching baseline 
method with the 20% in-day adjustment cap is the least accurate.  Removing the cap improves its 
accuracy, but does not do so enough.  The other notable difference is that the values for the 
baseline are substantially larger on a per household basis than those using AC end-use data, 
though demand reductions are similar.  This is because the baseline now includes all household 
end-uses in addition to AC, increasing the background noise.     
 
Figure 4-3 compares the actual impacts per household by event day with the estimates from the 
three most accurate settlement alternatives using household data – Regression Model 1, the 
weather-matching baseline and Regression Model 4.   
 

Figure 4-3: Comparison of Actual and Predicted Values by Date and Household Data 

 
 
The weather-matching baseline is once again accurate for the average event, but produces larger 
errors on specific event dates than other alternatives.  In specific, the impacts for July 16, August 
23 and August 26 are 66.9% too high, 44.9% too low and 77.4% too high, respectively.  Each of 
those days had relatively large per household impacts. 
 
Table 4-7 compares actual to predicted values for all the settlement alternatives tested and for 
each curtailment event.  It shows the metrics for assessing goodness-of-fit and bias introduced in 
Section 3.6. 
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Table 4-7: Accuracy and Goodness-of-Fit  
Across Event Days Within-subject Alternatives  Household Data 

Date 
Daily Max 
Temp  (°F) 

Actual 
Impacts 

Predicted Impacts 

Day Matching 
Weather 
Matching 

Regression 

1 2 3 1 2 3 4 

07/14/10 94.3 0.09 -0.02 0.01 0.13 0.10 0.12 0.13 0.15 0.07 

07/16/10 97.0 0.31 -0.34 0.56 0.48 0.52 0.19 0.21 0.17 0.19 

07/19/10 98.2 0.31 -0.14 0.38 0.40 0.34 0.35 0.37 0.37 0.15 

07/23/10 97.6 0.04 0.02 0.03 0.10 0.03 0.07 0.08 0.10 0.04 

08/03/10 91.4 0.26 0.22 0.26 0.25 0.22 0.32 0.34 0.33 0.27 

08/16/10 92.5 0.09 0.01 0.11 0.05 0.09 0.13 0.15 0.12 0.01 

08/23/10 97.3 0.38 0.01 0.19 0.27 0.21 0.39 0.42 0.43 0.45 

08/26/10 90.7 0.27 0.39 0.45 0.46 0.48 0.22 0.25 0.24 0.27 

09/01/10 98.1 0.18 0.11 0.25 0.17 0.05 0.19 0.23 0.19 0.16 

09/02/10 97.3 0.27 -0.10 -0.01 0.17 0.19 0.23 0.25 0.27 0.24 

09/03/10 97.2 0.18 0.28 0.31 0.20 0.20 0.13 0.19 0.23 0.24 

09/06/10 96.4 0.13 0.04 0.06 0.20 0.11 0.24 0.26 0.26 0.13 

09/28/10 90.2 0.21 -0.27 -0.18 -0.08 0.19 0.15 0.17 0.20 0.26 

09/29/10 96.6 0.35 -0.71 -0.03 0.17 0.31 0.30 0.33 0.33 0.29 

Average 95.3 0.23 -0.05 0.15 0.20 0.22 0.23 0.26 0.26 0.21 

Bias 
Mean percent error 

(MPE) 
-122.8% -36.0% -10.6% -5.7% 0.4% 11.8% 13.6% -7.5% 

Goodness 
of Fit 

Mean absolute error 
(MAE) 

0.31 0.16 0.10 0.06 0.05 0.05 0.05 0.05 

Mean absolute 
percent error (MAPE) 

120.2% 69.5% 48.6% 25.3% 29.3% 31.7% 35.8% 24.4%

Root mean squared 
error (RMSE) 

0.43 0.21 0.13 0.09 0.06 0.06 0.06 0.07 

Normalized RMSE 
(CVRMSE) 

1.88 0.92 0.57 0.40 0.25 0.27 0.28 0.30 

Coefficient of 
alienation (CoA) 

17.18 4.15 1.60 0.79 0.30 0.34 0.39 0.45 

Chi-squared 13.71 3.84 1.67 0.67 0.43 0.55 0.64 0.45 
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As in all prior analysis, the 10-in-10 day-matching baseline with the 20% cap on in-day 
adjustments performs the worst.  While it does not over or under predict on average, based on the 
goodness-of-fit metrics, the weather-matching baseline is once again less accurate than 
regression alternatives.   
 
Overall, the best settlement alternatives with household data are as good if not better than the 
best alternatives with AC end-use data.  This can be seen by comparing the normalized 
goodness-of-fit and bias metrics in Tables 4-3, 4-5 and 4-7.  The mean percent error for the best 
option using household data, 0.4%, is comparable to best options with AC individual and 
aggregated data, 0.8% and -1.7%, respectively.  The goodness-of-fit metrics for the best option 
with household data are less favorable in some cases than the comparable AC data metrics – e.g., 
MAPE and CVRMSE – and better for other metrics such as the coefficient of alienations (which 
measures the amount of unexplained variation).  This is important.  It leads to the conclusion that 
estimating impacts with smart meter data is not only less costly, but nearly as good as analyzing 
directly metered end-use data.    
 
The use of household data from smart meters as a basis for settlement analyses comes with 
several distinct advantages.  In California and many areas of the U.S., smart meters will be or 
already are universally available for residential and commercial customers.  It also provides the 
ability to use large samples at relatively low cost.  If the AC control-devices can be individually 
addressed, as is the case for PG&E and for most newer AC load control systems, it is possible to 
randomly assign a sub-set of the population to act as a control group. 
 
4.2.4 Feeder Data  

Using feeder data has garnered a substantial amount of attention primarily because the data 
collection system is already in place, can provide near real time visibility and provides the ability 
to extract data remotely.  The demonstrations testing the ability to use AC load control for 
operations relied on feeders that had among the highest share of households enrolled in load 
control programs.  However, they were specially selected feeders.   
 
A systematic analysis of randomly selected feeders better reflects whether or not feeder data can 
be used for settlement or operations.  Overall, a random sample of 10% of the feeders with 
controllable AC units was requested for analysis.  However, of the 204 feeders sampled, only 85 
had hourly or sub-hourly data that could be used for measuring demand reductions.  In addition, 
as described in Appendix B, those feeders were skewed to the Greater Bay Area and not all of 
them had data available for the full 2010 summer.  In other words, hourly or sub-hourly feeder 
data is not always available for the full population and there are often systematic differences 
between areas that do and do not have feeder data available.  This limits the ability to use feeder 
data to measure demand reductions for operations and settlement.  
 
Table 4-8 summarizes the characteristics of the sampled feeders for each 2010 simulated 
curtailment event.  The columns on the left side describe the characteristics of the average 
feeder, including the overall feeder loads, the controllable AC load and the aggregate curtailment 
from those AC loads.  The columns on the right side show the distribution of the demand 
reduction as a percent of feeder loads across the 85 feeders with data.   
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Table 4-8: Distribution of Percent Impacts on Feeders 

Date 

Average Feeder 

Load 
per AC 

unit 

Distribution of % Impacts on Feeder    
(50% AC Cycling) 

Load 
without 

DR 

AC load of 
SmartAC 

participants

Actual 
Aggregate 

Impact 

% 
Impact 

Temp 50th 75th 95th Max 

(kW) (kW) (kW) (%) (°F) (kW) (%) (%) (%) (%) 

7/14/2010 6,211.9 18.2 4.2 0.07% 82.5 0.19 0.01% 0.10% 0.35% 0.95% 

7/16/2010 6,840.5 57.3 19.2 0.28% 74.9 0.50 0.06% 0.31% 1.25% 1.49% 

7/19/2010 7,392.2 58.0 16.4 0.22% 82.4 0.57 0.02% 0.26% 0.98% 1.66% 

7/23/2010 5,796.6 13.1 1.8 0.03% 77.9 0.14 0.00% 0.04% 0.16% 0.56% 

8/3/2010 6,548.4 41.5 14.0 0.21% 80.4 0.41 0.04% 0.28% 1.03% 1.45% 

8/16/2010 6,122.4 25.0 4.8 0.08% 70.2 0.26 0.01% 0.12% 0.38% 0.45% 

8/23/2010 7,628.3 82.1 27.2 0.36% 94.3 0.79 0.16% 0.38% 1.48% 1.95% 

8/26/2010 6,503.0 41.8 13.8 0.21% 73.3 0.44 0.05% 0.34% 0.91% 1.19% 

9/1/2010 7,128.1 50.8 13.6 0.19% 80.7 0.47 0.08% 0.23% 0.71% 0.95% 

9/2/2010 7,879.9 55.5 17.7 0.22% 94.6 0.51 0.08% 0.22% 1.05% 1.65% 

9/3/2010 5,687.3 32.2 11.6 0.20% 69.2 0.27 0.05% 0.27% 0.89% 1.41% 

9/6/2010 6,313.9 40.5 8.8 0.14% 90.9 0.36 0.05% 0.17% 0.56% 0.73% 

Total 6,671.0 43.0 12.8 0.19% 80.9 0.41 0.04% 0.20% 0.88% 1.95% 
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For the average feeder, the curtailment events led to an average reduction of 0.2% for the feeder 
loads.  Even for the feeders with the highest penetration of load control devices, the curtailments 
rarely exceed more than 1% or 2% of the feeder loads.   
 
For the majority of feeders and days, the AC impacts are relatively small compared to the feeder 
loads because only a small fraction of the feeder load is controllable.  The average feeder in the 
dataset had roughly 2,200 residential accounts, of which, on average, 85 were enrolled in the AC 
load control program.  In addition, feeders typically include commercial and industrial accounts 
that may not be eligible for load control and additional non-AC end uses.  Feeder data can detect 
AC load reductions impact for feeders with extremely high saturation levels on very hot days.   
For most feeders, however, it is difficult to distinguish the load reduction – the "signal" – from 
normal fluctuations in feeder loads.  This is true even when 99% of the variation in feeder loads 
can be explained.  To put this in perspective, the remaining 1% of unexplained variation is five 
times larger than the demand reduction, 0.2%.   
 
Appendix I includes a more detailed discussion on how the data source affect demand reduction 
measurement accuracy and includes side-by-side comparisons of feeder loads with more granular 
data sources.   
 
Table 4-9 compares the actual and estimated demand reductions with each of the calculation 
methods used for feeder data.  It also includes the metrics for assessing bias and goodness-of-fit 
introduced in Section 3.6.  In total, the average event day impact was 0.16 per SmartAC 
household across sampled feeders with data.28   
   
Many of the calculation methods predicted the feeders load very well.  Several alternatives 
produced estimates that over or under estimated feeder loads by less than 1% and explained over 
98% of the variation in feeder loads.  While baseline and regression accurately predict feeder 
loads absent DR, they cannot accurately distinguish the demand reductions from normal, but 
unexplained fluctuations in feeder loads.   
 
Alternatives produce very small baseline errors such as regression model 4 still lead to large 
errors in the impact estimates.29  The most accurate results are from the two regression models 
that make use of same day or prior day load and employ treatment variables.  While they are 
better able to distinguish impacts from baseline error, they are still relatively inaccurate in 
comparison to alternatives based on AC end use of whole household data and do not perform 
well for individual event days as can be seen in the goodness-of-fit metrics. 
 
To pressure test the ability of feeder data to produce accurate impacts, the impacts were 
simulated under the assumption that AC compressors could indeed be fully shut down for short 
interval given the current PG&E customer agreement.  Doing so more than doubles the impact 
per household and produces a stronger signal, making it easier to detect AC load reductions from 

                                                 
28 The impacts per household are lower because less feeder data was not available in the hotter regions. In addition, the SCADA 
was not available for all feeders through the last week of September.  As a result, feeder data was available for 12 of the 
simulated events.  
 
29  Regression model 4 had a baseline MPE of-0.1% and explained 98.3%  of the variation in feeder loads.  



 

51 
 

the background noise.  Table 4-10 presents the accuracy of the different baseline calculation 
methods with feeder data and larger AC load reductions. 
 

Table 4-9: Accuracy and Goodness-of-Fit of Within Subject Settlement Alternatives  
Feeder Data with 50% AC Cycling 

Date 
Daily Max 

Temp  
(°F) 

Actual 
Impacts 

per home 

Predicted Impacts 

Day Matching 
Weather 
Matching 

Regression 

1 2 3 1 2 3 4 

07/14/10 94.3 0.05 -2.07 -1.54 -0.68 0.74 -0.10 -0.28 -0.12 0.23 

07/16/10 97.0 0.23 -2.54 4.88 3.64 3.42 -0.18 -0.13 -0.27 2.50 

07/19/10 98.2 0.20 -3.18 0.91 1.64 0.41 -0.28 -0.41 -0.34 -1.44 

07/23/10 97.6 0.02 -0.43 -0.41 0.49 -0.55 -0.15 -0.24 -0.08 -0.05 

08/03/10 91.4 0.17 -0.61 0.07 -0.29 0.20 0.79 0.87 0.73 0.54 

08/16/10 92.5 0.06 0.38 0.48 -0.53 0.00 -0.10 -0.06 -0.15 0.02 

08/23/10 97.3 0.33 -9.35 -4.25 -3.78 -4.90 -0.40 -0.62 -0.45 -0.54 

08/26/10 90.7 0.17 1.33 1.91 1.33 2.75 0.32 0.32 0.25 1.01 

09/01/10 98.1 0.16 -2.58 2.07 0.23 -3.22 -1.14 -1.22 -1.63 -2.38 

09/02/10 97.3 0.21 -9.26 -6.55 -2.64 -2.50 0.25 -0.11 0.00 -0.54 

09/03/10 97.2 0.14 2.03 2.69 0.69 1.28 0.02 0.28 0.67 1.31 

09/06/10 96.4 0.11 -1.74 -2.29 0.91 -2.04 0.51 0.31 0.48 0.33 

Average 95.7 0.16 -2.75 -0.68 -0.17 -0.59 0.02 -0.07 0.00 0.05 

Bias 

Baseline percent 
error 

-3.6% -1.0% -0.4% -0.9% -9.4% -1.4% -0.2% -0.1% 

Mean percent error 
(MPE) 

-1810% -526% -203% -463% -89% -140% -98% -72% 

Goodness 
of Fit 

Mean absolute error 
(MAE) 

3.46 2.46 1.45 1.85 0.40 0.46 0.48 0.88 

Mean absolute 
percent error 

(MAPE) 
21.14 16.63 9.32 11.65 3.04 3.67 3.31 5.49 

Root mean squared 
error (RMSE) 

4.80 3.23 1.97 2.48 0.51 0.58 0.64 1.17 

Normalized RMSE 
(CVRMSE) 

29.84 20.10 12.27 15.30 3.17 3.62 4.01 7.26 

Coefficient of 
alienation (CoA) 

3,125.17 1,417.72 528.68 830.05 35.23 46.03 56.47 184.97 

Chi-squared 1,937.47 1,014.99 323.27 535.34 30.24 41.03 44.42 139.85 
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Table 4-10: Accuracy and Goodness-of-Fit of Within Subject Settlement Alternatives Feeder 
Data with 100% AC Cycling 

Date 
Daily Max 
Temp  (°F) 

Actual 
Impacts 

per home 

Predicted Impacts 
Day Matching Weather 

Matching
Regression 

1 2 3 1 2 3 4 

07/14/10 94.3 0.17 6.12 -1.07 0.02 0.82 0.02 0.07 0.08 1.18 

07/16/10 97.0 0.54 3.47 5.31 4.18 3.36 0.05 0.29 -0.01 2.76 

07/19/10 98.2 0.55 8.64 0.63 1.36 0.04 0.10 0.57 -0.03 -0.53 

07/23/10 97.6 0.12 1.00 -0.26 0.43 -0.98 -0.38 -0.72 -0.06 1.15 

08/03/10 91.4 0.40 0.59 0.55 0.21 1.25 0.87 1.28 1.13 1.54 

08/16/10 92.5 0.23 -20.79 -22.90 -0.43 2.76 0.05 0.29 0.08 1.73 

08/23/10 97.3 0.80 -3.85 -4.39 -3.92 -5.52 0.44 1.39 1.06 1.59 

08/26/10 90.7 0.39 4.82 2.90 2.19 4.98 0.47 0.57 0.52 1.90 

09/01/10 98.1 0.49 -21.15 2.69 -3.15 -3.13 -0.50 0.74 -0.40 -2.25 

09/02/10 97.3 0.53 -21.99 -5.59 -1.70 9.59 0.37 0.60 0.44 0.54 

09/03/10 97.2 0.31 -16.78 -6.66 -8.34 1.25 0.21 0.10 0.83 2.76 

09/06/10 96.4 0.39 -13.07 -2.52 0.63 -10.93 0.57 0.50 0.68 1.29 

Average 95.7 0.42 -5.96 -2.65 -1.07 0.00 0.26 0.54 0.45 1.16 

Bias 
Baseline percent error -7.3% -3.1% -1.4% -0.2% -14.6% -3.2% 1.0% 0.9% 

Mean percent error 
(MPE) 

-1496% -737% -356% -100% -40% 25% 5% 171% 

Goodness 
of Fit 

Mean absolute error 
(MAE) 

10.43 4.22 2.39 3.91 0.34 0.34 0.39 1.27 

Mean absolute 
percent error (MAPE) 

2869% 1310% 636% 928% 102% 118% 111% 373% 

Root mean squared 
error (RMSE) 

13.09 6.66 3.74 5.45 0.43 0.47 0.46 1.50 

Normalized RMSE 
(CVRMSE) 

30.64 16.01 8.99 12.86 1.00 1.11 1.09 3.51 

Coefficient of 
alienation (CoA) 

4,629.50 1,252.95 395.62 830.95 4.97 6.04 5.84 60.76 

Chi-squared 8,886.17 3,153.41 837.45 1,265.14 9.74 15.16 10.61 119.62

 

While the measurements improve, the errors for individual curtailments are, on average, larger 
than the curtailments.  In all cases, settlement alternatives that rely on household or AC end-use 
data outperform the measurements with feeder data by orders of magnitude.  All of the 
settlement alternatives with feeder data produce large differences between actual and estimated 
impacts.  Simply put, using feeder data for settlement of AC load control programs is highly 
inaccurate and impractical.  Except for highly selected feeders, the percent load impacts on 
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feeder data are extremely small, making it difficult to accurately distinguish reductions in 
electricity use due to load control from variation in other feeder loads.   
 
4.3 Accuracy with Control Groups 

This section presents the results of calculation methods that rely on control groups.  In the 
simulation, customers were randomly assigned to a curtailment or a control group to ensure that 
the only systematic difference between the two groups is whether or not they were curtailed.   
 
To date, discussions on settlement of DR in electricity markets have focused almost exclusively 
on day-matching baselines and other algorithms to establish what electricity use would have 
been in the absence of the demand reduction.  This is an outgrowth of the fact that demand 
response programs for large C&I customers were the first type of DR integrated into electricity 
markets.  It is difficult to employ random assignment with larger customers due to their limited 
number and the large amount of variation between them.  However, with AC direct control, there 
are a far larger number of participants and less variation in their scale – at least in comparison to 
large C&I customers.  As result, it is possible to use random assignment to estimate AC load 
impacts using either AC end-use or household data.   
 
This section separately presents the result of using control groups with AC end-use and 
household data. In both cases, the results are presented using samples with 100, 200, 300, 500, 
1,000 and 2,000 sample points each who do and do not have their AC units controlled.  In 
addition, the results are presented using on simple comparison of means and a weather matched 
difference-in-differences calculation.  With the first approach, demand reductions are estimated 
as the difference between the group that did not have their AC loads curtailed and one that did.  
With the second approach, the difference also between the two groups is calculated for the 
curtailment day.  However, in addition, differences between the two groups observed during days 
without curtailments and similar weather are subtracted out.  This added step nets out differences 
that are irrelevant and mainly due to sampling variation and improves the precision of the 
measurement, particularly if smaller samples are employed.  Section 3.5.4 provides more detail 
about these calculation methods, including examples. 
 
4.3.1 Air Conditioner End-use Data 

Table 4-11 summarizes the results using a simple comparison of means for different sample 
sizes.  In each case, we show the distribution of per household load without load control, per 
household known impacts, and the metrics introduced in Section 3.6 to assess bias and goodness-
of-fit.  In each case, the table presents the distribution of these metrics across all 100 simulations.  
In practice, a sample is typically only selected once per year.  The tables indicate that likelihood 
that the randomly assigned samples will yield different levels of accuracy based on the 100 
random samples drawn for each sample size category.    
 
The use of control groups and random assignment produces results that do not over or under 
estimate demand reductions.  This is reflected by the mean percent error, a metric for bias, which 
ranges from -4.1 % to 0.9% for the average sample, depending on sample size.   

 



 

54 
 

 

Table 4-11: Accuracy and Goodness-of-Fit Metrics Random Assignment with a Simple 
Comparison of Means AC End-use Data with 50% AC Cycling 

Sample 
Size 

Metric Average 
Std. 

Deviation

Distribution Percentiles 

5th 25th Median 75th 95th 

100 

Impacts 
Sample True Load w/o DR 0.82 0.07 0.69 0.77 0.81 0.86 0.91 

Sample True Impact 0.21 0.02 0.19 0.20 0.21 0.23 0.24 

Bias 
Baseline percent error -1.1% 11.2% -17.1% -7.7% -1.8% 5.8% 15.1% 

MPE (Demand Reduction) -4.1% 43.5% -66.2% -30.2% -7.2% 22.6% 58.9% 

Goodness 
of Fit 

MAE 0.13 0.04 0.08 0.10 0.12 0.14 0.19 

MAPE 68.6% 24.6% 43.1% 54.4% 64.8% 75.3% 109.2% 

CVRMSE 0.75 0.24 0.48 0.59 0.69 0.86 1.16 

Coefficient of alienation 3.65 2.77 1.32 2.00 2.89 4.67 7.57 

300 

Impacts 
Sample True Load w/o DR 0.83 0.04 0.76 0.81 0.83 0.86 0.90 

Sample True Impact 0.21 0.01 0.20 0.21 0.21 0.22 0.24 

Bias 
Baseline percent error 0.2% 7.6% -12.1% -4.5% -0.4% 4.7% 13.0% 

MPE (Demand Reduction) 0.7% 29.7% -46.9% -17.2% -1.4% 18.3% 51.3% 

Goodness 
of Fit 

MAE 0.08 0.03 0.05 0.06 0.07 0.09 0.14 

MAPE 41.3% 12.7% 26.6% 32.0% 38.8% 48.1% 66.5% 

CVRMSE 0.48 0.15 0.29 0.36 0.44 0.57 0.76 

Coefficient of alienation 1.57 1.00 0.50 0.85 1.23 2.04 3.66 

500 

Impacts 
Sample True Load w/o DR 0.83 0.03 0.78 0.81 0.83 0.85 0.87 

Sample True Impact 0.21 0.01 0.20 0.21 0.21 0.22 0.23 

Bias 
Baseline percent error 0.0% 5.4% -8.3% -3.6% -0.6% 3.5% 10.1% 

MPE (Demand Reduction) -0.1% 20.9% -32.3% -14.1% -2.2% 13.7% 39.0% 

Goodness 
of Fit 

MAE 0.06 0.02 0.04 0.05 0.06 0.07 0.09 

MAPE 31.5% 8.8% 20.2% 25.3% 29.9% 35.2% 50.3% 

CVRMSE 0.36 0.10 0.23 0.29 0.34 0.42 0.55 

Coefficient of alienation 0.90 0.53 0.35 0.53 0.75 1.19 1.94 

1000 

Impacts 
Sample True Load w/o DR 0.83 0.02 0.80 0.82 0.83 0.84 0.86 

Sample True Impact 0.21 0.01 0.21 0.21 0.21 0.22 0.22 

Bias 
Baseline percent error 0.2% 3.6% -5.7% -2.1% 0.2% 2.1% 6.4% 

MPE (Demand Reduction) 0.9% 14.0% -22.4% -8.1% 0.7% 8.3% 24.9% 

Goodness 
of Fit 

MAE 0.04 0.01 0.03 0.04 0.04 0.05 0.07 

MAPE 22.7% 6.4% 14.0% 17.9% 21.3% 26.3% 34.6% 

CVRMSE 0.26 0.07 0.17 0.20 0.24 0.30 0.40 

Coefficient of alienation 0.46 0.28 0.18 0.26 0.37 0.58 0.97 

2000 

Impacts 
Sample True Load w/o DR 0.83 0.01 0.81 0.82 0.83 0.83 0.85 

Sample True Impact 0.21 0.00 0.21 0.21 0.21 0.22 0.22 

Bias 
Baseline percent error -0.1% 2.5% -4.2% -1.3% 0.0% 1.3% 3.7% 

MPE (Demand Reduction) -0.3% 9.6% -16.4% -5.2% -0.2% 4.9% 14.5% 

Goodness 
of Fit 

MAE 0.03 0.01 0.02 0.02 0.03 0.03 0.05 

MAPE 14.8% 4.1% 9.5% 12.5% 14.0% 16.4% 22.2% 

CVRMSE 0.17 0.05 0.11 0.14 0.16 0.19 0.27 

Coefficient of alienation 0.21 0.15 0.08 0.12 0.16 0.24 0.46 
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However, since samples can only be drawn once, variation from sampling can lead to less 
accurate measurement and introduce bias.  It is more practical to focus on the likelihood of 
drawing a sample that produces inaccurate estimates.  The easiest way to assess the expected bias 
and accuracy of different samples sizes is by comparing the distribution percentiles. In total, 50% 
of the samples produced results between the 25th and 75th percentile, and 90% of them produced 
results between the 5th and 95th percentiles.  
 
For example, when a sample with 500 AC units each in the treatment and control groups was 
drawn, half the control groups, produced impacts where the bias was between -14.3% and 
14.0%, as measured by the MPE. That means that there is approximately a 50% chance that a 
sample of 500 will over or under estimated demand reductions by more than 14%.  With a 
sample size of 500, over 10% of the control groups produced estimates with a bias that exceeded 
±32%.  As sample sizes increase, the likelihood of systematic errors due to sampling variation 
decreases.  With samples of 2,000 customers, 50% of control groups drawn produced estimates 
over or underestimated demand reduction by less than 5%.  The same is true for the goodness-of-
fit statistics.  For example, with a sample of 500 customers there is a 50% chance that the 
average error for individual events (the MAPE metrics) will exceed 30%, the median.  With a 
large sample of 2,000, there is a 50% chance that the average error for individual events will 
exceed 16%, the median, and a 5% chance that it will exceed 22%, the 95th percentile.   
 
In practice, samples that collect AC end-use data tend to be costly and typically range between 
500 to 1,000.  Smaller samples are less reliable, especially they are used to produce demand 
reduction estimates for more specific areas in the grid.  As noted earlier, one of the easiest ways 
to improve the precision of the measurements with control group is to use the weather matched 
differences-in-differences calculation.   
 
Table 4-12 summarizes the results if the differences-in-differences calculation is applied.  It 
summarizes the results for the 100 separate samples drawn to reflect role of sampling variation.  
The relatively simple calculation noticeably improves the precision of the measurements.  With a 
sample of 500, nearly half of control groups produces estimates that over or under reported 
demand reductions by less 6% and over 90% of the control groups produced estimates with a 
bias of less than 15%.  With larger sample size of 2000, the results improve even more.  The 
likelihood that the control group will substantially over or under estimate the demand reduction 
is relatively small.  The biggest improvement, however, is the goodness of fit statistics, which 
outperform all other calculation methods so far.  There is 50% chance that using a control group 
of 2,000 accounts will lead to individual curtailment event errors that average less the 12% and 
that the control group will leave less than 13% of the variation in demand reductions unexplained 
(this is reflected in the coefficient of alienation). 
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Table 4-12: Accuracy and Goodness-of-Fit Metrics  
Random Assignment with ak Difference-in-differences Calculation  

AC End-use Data with 50% AC Cycling 
Sample 

Size 
Metric Average 

Std. 
Deviation 

Distribution Percentiles 

5th 25th Median 75th 95th 

100 

Impacts 
Sample True Load w/o DR 0.83 0.07 0.71 0.78 0.83 0.88 0.94 

Sample True Impact 0.21 0.02 0.19 0.20 0.21 0.23 0.24 

Bias 
Baseline percent error 0.0% 5.1% -8.5% -3.5% -0.1% 3.3% 9.8% 

MPE (Demand Reduction) 0.2% 19.9% -32.6% -13.8% -0.3% 13.0% 38.4% 

Goodness 
of Fit 

MAE 0.11 0.02 0.08 0.09 0.10 0.12 0.15 

MAPE 57.7% 14.6% 38.0% 47.7% 54.8% 64.6% 84.5% 

CVRMSE 0.63 0.16 0.44 0.51 0.61 0.71 0.93 

Coefficient of alienation 2.48 1.18 1.14 1.50 2.23 3.18 4.88 

300 

Impacts 
Sample True Load w/o DR 0.83 0.04 0.77 0.80 0.83 0.85 0.90 

Sample True Impact 0.21 0.01 0.20 0.21 0.21 0.22 0.24 

Bias 
Baseline percent error 0.2% 2.8% -4.1% -1.8% 0.2% 1.9% 4.6% 

MPE (Demand Reduction) 0.6% 11.1% -16.0% -7.0% 0.9% 7.4% 18.0% 

Goodness 
of Fit 

MAE 0.06 0.01 0.05 0.06 0.06 0.07 0.09 

MAPE 34.1% 8.3% 23.7% 29.4% 32.3% 37.4% 48.0% 

CVRMSE 0.39 0.10 0.27 0.32 0.37 0.43 0.58 

Coefficient of alienation 1.02 0.53 0.41 0.64 0.87 1.14 2.31 

500 

Impacts 
Sample True Load w/o DR 0.83 0.03 0.78 0.81 0.83 0.85 0.88 

Sample True Impact 0.21 0.01 0.20 0.21 0.21 0.22 0.23 

Bias 
Baseline percent error 0.0% 2.3% -4.1% -1.3% 0.0% 1.5% 3.5% 

MPE (Demand Reduction) 0.1% 9.0% -16.1% -5.1% 0.0% 6.0% 13.6% 

Goodness 
of Fit 

MAE 0.05 0.01 0.04 0.04 0.05 0.06 0.07 

MAPE 26.4% 5.4% 17.9% 21.8% 26.2% 30.1% 35.6% 

CVRMSE 0.30 0.07 0.20 0.25 0.30 0.34 0.43 

Coefficient of alienation 0.62 0.28 0.27 0.42 0.56 0.75 1.21 

1000 

Impacts 
Sample True Load w/o DR 0.83 0.02 0.81 0.82 0.83 0.84 0.86 

Sample True Impact 0.21 0.01 0.21 0.21 0.21 0.22 0.22 

Bias 
Baseline percent error -0.1% 1.8% -3.2% -1.4% -0.1% 1.2% 2.7% 

MPE (Demand Reduction) -0.4% 6.9% -12.6% -5.6% -0.2% 4.6% 10.5% 

Goodness 
of Fit 

MAE 0.04 0.01 0.02 0.03 0.04 0.04 0.06 

MAPE 19.3% 4.9% 12.3% 16.0% 18.7% 21.6% 28.4% 

CVRMSE 0.22 0.06 0.14 0.18 0.21 0.24 0.35 

Coefficient of alienation 0.34 0.19 0.13 0.21 0.30 0.37 0.76 

2000 

Impacts 
Sample True Load w/o DR 0.83 0.01 0.81 0.82 0.83 0.84 0.84 

Sample True Impact 0.21 0.00 0.21 0.21 0.21 0.22 0.22 

Bias 
Baseline percent error 0.0% 1.0% -1.7% -0.7% -0.1% 0.8% 1.9% 

MPE (Demand Reduction) 0.0% 4.0% -6.5% -2.6% -0.6% 3.1% 7.3% 

Goodness 
of Fit 

MAE 0.02 0.01 0.02 0.02 0.02 0.03 0.03 

MAPE 12.5% 2.6% 8.6% 10.8% 12.1% 14.0% 17.0% 

CVRMSE 0.14 0.04 0.10 0.12 0.14 0.16 0.20 

Coefficient of alienation 0.14 0.07 0.06 0.09 0.13 0.17 0.27 
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4.3.2 Household Data 

While random assignment of control operations is generally accurate with AC end-use data, 
household data includes other end-uses, producing more background noise from which impacts 
must be detected.  The same process of conducting 100 sampling iterations was employed with 
household data.  There are two main differences between AC end-use and household data.  First, 
with smart meters in place, data collections for equivalent sample sizes are substantially lower 
for household data than for AC end-us data.  Or, to put it differently, sample sizes with 
household data can be magnitudes larger with the same or lower costs.  Second, the percent load 
reductions with household data are smaller due to the additional background noise from other 
non-cooling related household end-uses.  In specific, the average percent impacts ion household 
data are 11% compared to 25% for AC end-use data. 
 
Table 4-13 summarizes the results with the simple comparison of means for different sample 
sizes.  In each case we show the distribution of per household load without load control, per 
household known impacts, and the metrics introduces in Section 3.6 to assess bias and goodness-
of-fit.  The table indicates the likelihood that a sample drawn will yield different levels of bias 
and fit.   
 
Not surprisingly, in comparison to the AC data, the household data produces less accurate 
results.  This is exclusively due to the additional noise from end-uses unrelated to AC or cooling.  
Even when there are 2,000 customers the curtailment and control groups, the impacts can be 
relatively inaccurate due to chance.  In fact, half of the sample draws had errors that 
underestimated impacts by more than 16% or over overestimated impacts by more than 11%.   
Likewise, there is 50% change that average error for individual events (MAPE) will exceed 27%.  
 
Table 4-14 summarizes the results using the differences-in-differences calculation.  The accuracy 
of the results improves noticeably in contrast to the simple comparison of means calculation.  
With 2,000 customers in each group, there is a 50% chance that the samples drawn will, on 
average, over or under estimate demand reductions by less than 4%.  As with AC data, the 
largest improvement is in the accuracy of impacts for individual event days.  
 
The weighted absolute mean percent error for individual days was less than 22.4% in 90% of 
sample draws and below 15.7% in half of them.  Likewise, the R-squared statistics are noticeably 
better.  They exceed 0.70 in 95% of the sample draws and are over 0.84 in half of them.  These 
results are substantially better than any of the within subjects regression, day-matching or 
weather-matching baselines.  In addition, the household data samples can be increased by orders 
of magnitude and more aggressive air conditioner control studies are likely to be used when 
using AC for spinning reserves.  Either of those options drastically improves the accuracy of the 
results.  The goodness-of-fit statistics indicate that the using control groups with samples of 
2,000 households and the difference-in-differences calculation outperforms all other 
measurement options except for large control groups of AC end-use data. 
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Table 4-13: Accuracy and Goodness-of-Fit Metrics Random Assignment with Simple 
Comparison of Means for Household Data with 50% AC Cycling 

Sample 
Size 

Metric Average 
Std. 

Deviation

Distribution Percentiles 

5th 25th Median 75th 95th 

100 

Impacts 
Sample True Load w/o DR 2.00 0.16 1.75 1.88 2.01 2.11 2.27 

Sample True Impact 0.23 0.01 0.22 0.23 0.23 0.24 0.25 

Bias 
Baseline percent error -0.4% 11.1% -19.1% -9.1% -0.3% 7.5% 18.8% 

MPE (Demand Reduction) -8.3% 97.6% -176.0% -87.7% -2.8% 61.5% 150.1% 

Goodness 
of Fit 

MAE 0.25 0.10 0.12 0.17 0.22 0.31 0.45 

MAPE 140.1% 54.8% 66.6% 100.2% 127.4% 172.6% 240.4% 

CVRMSE 1.26 0.45 0.63 0.88 1.19 1.57 2.08 

Coefficient of alienation 8.17 5.74 1.86 3.50 6.43 11.31 20.17 

300 

Impacts 
Sample True Load w/o DR 2.04 0.11 1.90 1.96 2.03 2.11 2.22 

Sample True Impact 0.23 0.01 0.22 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error 1.6% 6.9% -7.4% -3.1% 1.3% 5.2% 13.1% 

MPE (Demand Reduction) 12.5% 58.9% -64.7% -27.1% 11.6% 43.9% 108.6% 

Goodness 
of Fit 

MAE 0.15 0.07 0.08 0.10 0.13 0.16 0.26 

MAPE 82.8% 39.1% 44.4% 61.0% 74.6% 92.6% 147.6% 

CVRMSE 0.75 0.31 0.44 0.54 0.69 0.85 1.29 

Coefficient of alienation 2.98 3.14 0.89 1.32 2.12 3.38 7.61 

500 

Impacts 
Sample True Load w/o DR 2.01 0.08 1.88 1.95 1.99 2.06 2.14 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error -0.3% 5.3% -8.1% -4.3% -0.8% 2.7% 9.7% 

MPE (Demand Reduction) -3.9% 45.4% -72.4% -38.3% -7.1% 22.0% 78.2% 

Goodness 
of Fit 

MAE 0.11 0.04 0.06 0.08 0.10 0.14 0.21 

MAPE 64.5% 23.9% 35.8% 45.7% 58.2% 79.8% 105.6% 

CVRMSE 0.58 0.20 0.33 0.42 0.54 0.72 0.97 

Coefficient of alienation 1.69 1.18 0.49 0.80 1.32 2.35 4.31 

1000 

Impacts 
Sample True Load w/o DR 2.02 0.06 1.93 1.99 2.01 2.06 2.13 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error 0.4% 4.0% -6.4% -1.8% 0.5% 2.9% 6.6% 

MPE (Demand Reduction) 2.9% 34.1% -57.4% -16.3% 4.1% 24.5% 55.9% 

Goodness 
of Fit 

MAE 0.08 0.04 0.05 0.06 0.07 0.09 0.16 

MAPE 45.6% 20.7% 25.4% 30.9% 39.5% 53.0% 91.7% 

CVRMSE 0.42 0.17 0.24 0.31 0.37 0.50 0.73 

Coefficient of alienation 0.94 0.87 0.27 0.42 0.62 1.15 2.39 

2000 

Impacts 
Sample True Load w/o DR 2.01 0.03 1.95 1.99 2.01 2.03 2.06 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.23 0.24 

Bias 
Baseline percent error -0.4% 2.6% -4.6% -1.8% -0.3% 1.3% 3.8% 

MPE (Demand Reduction) -3.6% 22.4% -40.8% -16.0% -2.4% 11.3% 32.3% 

Goodness 
of Fit 

MAE 0.06 0.03 0.03 0.04 0.05 0.06 0.11 

MAPE 31.3% 14.0% 16.6% 21.7% 26.6% 36.1% 64.1% 

CVRMSE 0.28 0.11 0.17 0.21 0.24 0.32 0.52 

Coefficient of alienation 0.42 0.39 0.13 0.20 0.27 0.47 1.25 
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Table 4-14: Random Assignment with Difference-in-differences Accuracy and Goodness-of-Fit 
for Household Data with 50% AC Cycling 

Sample 
Size 

Metric Average 
Std. 

Deviation

Distribution Percentiles 

5th 25th Median 75th 95th 

100 

Impacts 
Sample True Load w/o DR 2.02 0.19 1.76 1.87 2.00 2.16 2.34 

Sample True Impact 0.23 0.01 0.22 0.23 0.23 0.24 0.25 

Bias 
Baseline percent error -0.1% 3.6% -6.6% -2.5% 0.2% 1.8% 5.7% 

MPE (Demand Reduction) -1.4% 31.6% -54.3% -21.8% 2.0% 15.6% 49.8% 

Goodness 
of Fit 

MAE 0.17 0.04 0.11 0.14 0.16 0.20 0.25 

MAPE 94.8% 25.7% 56.7% 75.0% 91.6% 110.4% 147.3% 

CVRMSE 0.92 0.22 0.63 0.75 0.90 1.04 1.32 

Coefficient of alienation 4.01 1.99 1.81 2.64 3.68 5.08 7.34 

300 

Impacts 
Sample True Load w/o DR 2.01 0.10 1.86 1.95 2.01 2.07 2.19 

Sample True Impact 0.23 0.01 0.22 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error 0.0% 2.0% -3.2% -1.6% -0.2% 1.3% 3.8% 

MPE (Demand Reduction) -0.2% 17.5% -26.1% -13.7% -2.1% 11.0% 34.5% 

Goodness 
of Fit 

MAE 0.10 0.02 0.07 0.09 0.10 0.12 0.15 

MAPE 57.0% 13.5% 37.6% 48.3% 56.1% 62.9% 84.4% 

CVRMSE 0.55 0.12 0.37 0.47 0.55 0.63 0.75 

Coefficient of alienation 1.44 0.65 0.65 0.98 1.35 1.83 2.53 

500 

Impacts 
Sample True Load w/o DR 2.01 0.08 1.88 1.98 2.01 2.06 2.13 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error -0.1% 1.6% -2.5% -1.0% 0.0% 0.9% 2.4% 

MPE (Demand Reduction) -0.6% 14.0% -21.2% -8.7% 0.0% 7.7% 22.0% 

Goodness 
of Fit 

MAE 0.08 0.02 0.05 0.06 0.08 0.09 0.10 

MAPE 42.1% 8.5% 28.4% 35.8% 41.7% 46.9% 57.5% 

CVRMSE 0.41 0.09 0.28 0.34 0.41 0.46 0.58 

Coefficient of alienation 0.79 0.33 0.36 0.54 0.76 0.94 1.52 

1000 

Impacts 
Sample True Load w/o DR 2.02 0.05 1.93 1.98 2.02 2.05 2.11 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.24 0.24 

Bias 
Baseline percent error 0.0% 0.9% -1.5% -0.6% 0.0% 0.7% 1.4% 

MPE (Demand Reduction) 0.0% 8.1% -13.3% -5.0% -0.3% 5.8% 12.5% 

Goodness 
of Fit 

MAE 0.05 0.01 0.04 0.05 0.05 0.06 0.07 

MAPE 29.8% 6.1% 20.9% 25.4% 29.5% 34.0% 41.5% 

CVRMSE 0.29 0.06 0.21 0.25 0.29 0.32 0.39 

Coefficient of alienation 0.40 0.17 0.20 0.28 0.38 0.46 0.70 

2000 

Impacts 
Sample True Load w/o DR 2.02 0.03 1.97 2.00 2.02 2.04 2.07 

Sample True Impact 0.23 0.00 0.23 0.23 0.23 0.23 0.24 

Bias 
Baseline percent error 0.0% 0.7% -1.1% -0.5% -0.1% 0.4% 1.2% 

MPE (Demand Reduction) -0.4% 5.9% -9.4% -4.6% -0.8% 3.3% 10.2% 

Goodness 
of Fit 

MAE 0.04 0.01 0.03 0.04 0.04 0.04 0.05 

MAPE 21.2% 3.8% 15.1% 18.6% 20.5% 23.2% 27.9% 

CVRMSE 0.21 0.04 0.15 0.19 0.20 0.23 0.27 

Coefficient of alienation 0.20 0.07 0.10 0.16 0.19 0.24 0.30 
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4.4 Key Findings  

On aggregate, the comparison of measurement alternatives produced several relevant insights.  
First, the standard settlement approach used by the California ISO, a 10-in-10 day matching 
baseline with 20% same day adjustment cap, is inadequate for highly weather sensitive resources 
such as AC load control.  The calculation method had the worst performance of all alternatives 
tested regardless of the data source used.  Second, feeder data has very limited application for 
estimating AC load reductions for settlement and operations.  It can perform well under very 
high temperatures if a highly saturated feeder is selected and a full load shed strategy is 
employed, but it cannot be applied widely because many feeders lack hourly or sub-hourly data 
and in most cases the demand reduction is a very small share of feeder loads and difficult to 
distinguish for normal variation in such loads.  Third, relatively large control groups are required 
to accurately estimate demand reduction using a control group, if a simple comparisons of means 
is employed.  However, applying the relatively simple weather matched differences in 
differences calculation described in Section 3.5.4 leads to substantial improvements in the 
accuracy of the results.  Fourth, the simplest and least technical approach – using impact 
estimates tables – produces relatively accurate results, on average, and outperforms many of the 
more sophisticated settlement alternatives.  While it lacks the precision needed for grid 
operations, it can be used to simplify the settlement process. 
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5. A Settlement Framework 

The analysis of how well different settlement alternatives estimate actual impact for both the 
average event and individual event days narrows the number of options that are viable.  Clearly, 
settlement using the California ISO standard 10-in-10 baseline with a 20% adjustment cap is 
inadequate for residential AC curtailments regardless of the data sources employed.  So are 
impact estimates that rely on feeder data.  Both perform far worse than the relying on simple 
impact estimate tables.  Both are inaccurate for the average event day and for individual event 
days.  Based on the results, it is difficult not to conclude that impact estimates for settlement in 
electricity markets must rely on either AC end-use data or whole household data.  Several 
methods with both of these data sources are highly accurate.  
 
In addition to the accuracy, cost is a key criteria in selecting the settlement framework.  There 
are four main types of cost associated with settlement and they differ for AC end-use and 
household data:   

 Sample design and implementation:  These are costs associated with designing the 
sample, addressing load control devices, if needed, and developing the operations plan 
for the sample. 

 Data collection system:  These are incremental costs to existing data collection 
infrastructure.  For AC end-use data this includes recruitment participants, procuring data 
collection devices, installing them, and setting up the communications.  For household 
data, the incremental costs can be as low as instructing devices to collect data at sub-
hourly intervals.  

 Transmittal of data:  Depending on the system design, there are data transmittal costs 
associated with moving data from the data collection device to a central point and 
aggregating it.  

 Data management and calculation of impacts: These are the costs associated with 
implementing the settlement alternative. 

 Verification costs: These are cost incurred by system operator in verifying the 
settlement calculations.  

Operations to stabilize the grid are relatively infrequent and, typically, short in duration.  In most 
markets, the bulk of the payments is for availability, meaning that generators and other resources 
need to be ready to ramp up resources quickly on a moment’s notice.  The fact that using impact 
estimates tables provides relatively accurate AC load reduction estimates raises several 
questions.  Is it really necessary to use more complex settlement calculations for each individual 
AC load control activation?  Is the incremental accuracy worth it?  Does the system operator 
need to verify the measurement and calculations for each individual event?  Can impact estimate 
tables be used for settlement and calibrated and verified annually?  
 
This section discussed the role of data collection technology in supporting grid operations and 
proposes a framework for settlement that relies on tables with pre-calculated load reductions per 
device or household – a deemed saving approach.  In addition, it compares the estimated cost 
range of the proposed framework to other settlement alternatives with household and AC end use 
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data.  Under this framework, impact estimate tables would be used to settle operations 
throughout the year.  On an annual basis, the impact estimate tables would be updated, 
reassessed for accuracy and verified by the system operator.   The costs from such an approach 
are compared for calculating impacts for settlement after each operation using AC end-use and 
household data.  
 
 
5.1 The Role of Data Collection Technology 

It is critical to separately consider the data source and the attributes of the technology used to 
collect data.  There are multiple data collection options for AC, household and feeders.  The 
functionality of the data collection – factors such as the ability to extract the data remotely, time 
interval recorded and the ability to see usage pattern in close to real time – can affect operations.  
Different uses require different capabilities and more functionality means higher costs.  For 
example, while the ability to see usage patterns in near real time is required for California ISO 
operations, it is not required or reconciled for settlement purposes.  Likewise, the ability to 
retrieve AC use patterns an hour or two earlier may be useful for calibrating forecasts of 
available resources, but is not a pre-requisite of data collection.  Table 5-1 summarizes a number 
of data technology alternatives and their key functional features. 
 

Table 5-1: Data Source and Data Collection Technology Options and Functionality 

Source Technology30 
% of Coverage 

of Existing 
Data Systems 

Data Collection 
Time Interval 

Ability to 
Extract Data 

Real Time 
Visibility 

Signal to 
Noise Ratio 

Feeder SCADA 50% 5 minutes or less Limited Yes Very low 

Whole 
House 

Smart meter 100% 
15 minutes (w/o 
affecting billing 

systems) 
Day late No 

Medium 

 

Metering w/ daily 
upload capability 

0% 5 minutes or less Day late No 

Metering w/ real 
time capability 

0% 5 minutes or less 1 minute lag Yes 

Metering w/ end-of-
summer extraction 

0% 5 minutes or less Very limited No 

AC Unit 

Day late metering 0% 5 minutes or less Day late No 

High 
Near Real time 

metering 
0% 5 minutes or less 1 minute lag Yes 

End-of-summer 
metering 

0% 5 minutes or less Very limited No 

 
Using feeder data has garnered a substantial amount of attention primarily because the data 
collection system is already in place has some desirable qualities.  When it is available, it often 
times provides near real time visibility, measurement for small time intervals (e.g., minutes or 

                                                 
30  A key aspect of technology is the accuracy of the data recording device.  This is very different than the accuracy of the 
demand reduction estimate.  The CPUC requires electric meters to meet a +/- 2%.  For smart meters, the independent PG&E 
Advanced Metering Assessment Report conducted by The Structure Group in behalf of the CPUC in 2010 concluded that 611 of 
the 611 smart meters tested met accuracy standards.  [add citation]  In contrast 141 of the 147 (96%) of the electromechanical 
meters tested met the +/- 2% accuracy standard.  Most data collection devices  
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seconds) and the ability to extract data remotely.  There are several downsides, however.  First, 
as shown, most feeders do not have sufficient penetration of load control devices to distinguish 
the AC load reduction from the background “noise” for non-participants and other participant 
end-uses.  Second, in many utilities a substantial share of feeders either lack sub-hourly data 
collection or the data itself is difficult to extract.  In the case of PG&E, about half of the feeders 
have five minute data available and half do not.  It is not uncommon for utilities to have visibility 
for 20% or less of the feeders in place.  
 
A growing number of utilities have installed or are in the process of installing smart meters.  
Their near universal deployment presents another existing data collection option that can be used 
for measurement of AC demand reductions.  As of November 2010, over 82% of the 125,000 
SmartAC participants had smart meters in place.  As a result, it is far more economical to select 
large representative samples or even use a census of the full population.  With feeder data, 
controllable AC load can be a small component of the total feeder electricity use.  With 
household level data for program participation, the controllable AC load is a far larger share of 
the electricity use.  Because PG&E AC control devices are capable of two-way communication, 
with smart meters it is possible to employ randomly assigned control groups – widely considered 
the gold standard for estimating impacts accurately – for settlement.  However, smart meters also 
have drawbacks.  They normally collect data at hourly intervals but often can be remotely 
adjusted to collect data for smaller time intervals.  From a practical standpoint, changing the 
smart meter time interval of data collection can require altering data collection or billing systems 
and impose substantial costs.  In the case of PG&E, the utility can remotely change the time 
interval of data collection to 15-minute measurements without affecting those systems.  Using a 
coarser time interval does affect the ratio between AC electricity use reductions, the "signal," and 
other electricity use, the "background noise."  For example, if the true percent reduction in 
household load was 30% over a 10-minute dispatch period, with 15-minute intervals the impact 
would show up as roughly 20%.  While not optimal, even after factoring in the larger time 
intervals, the signal - the percent load reduction - is larger with household level data than it is 
with feeder data.   
   
While there are other alternatives beside using existing smart meters or feeder data collection 
system, they rely more so on samples and require deploying new data collection systems and 
equipment and can be costly depending on sample sizes.  
 
There a number of options to increase the accuracy of the impacts when samples sizes are 
smaller.  One option is to increase the signal, the percent load reduction, relative to the 
background noise.  Larger percent load are easier to detect with a higher degree of accuracy.  
Using a load shed strategy rather than reducing the duty cycle of AC units increases the 
reductions.  So does relying on AC end-use data rather than whole household data.  AC end-use 
data inherently has less noise and as a result, it is easier to identify the impact of load control, 
especially when temperatures are hot but not very hot.  Another option is to rely on more 
sophisticated statistical analyses that explain of subtract some of the variation or background 
noise.  One widely used statistical approach that is still transparent and easy to implement is a 
differences-in-differences calculation.  It effectively calculates the bias during a set of non-event 
days such as non-event days with similar temperature conditions and nets it out of the demand 
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reduction measurement calculation. This approaches increase the precision of the impact 
estimates at a low cost with relatively few barriers.  
 
5.2 A Measurement Framework for Operations and Settlement 

There are several advantages to using impact estimate tables for settlement.  The tables provide 
an estimate of impacts in advance, settlement is fast and without uncertainty, settlement disputes 
are reduced, and it only requires one annual round of detailed analysis verified by the system 
operators (or its evaluation sub-contractor).  Clearly, an impact estimate table needs to rely on 
estimated impacts from actual events.  But it does split and simplify actual settlements from the 
task of re-calculating and verifying them. 
 
Figure 5-1 visually describes the proposed framework.  In a short, it provides key junctures 
during which the accuracy of impact estimate tables and the data underlying them is verified.  
Otherwise, settlements are based on impact estimate tables that are agreed upon and verified in 
advance.  From a market perspective, the accuracy of the settlement is the most important aspect.  
How the impact estimates are produces is a secondary component.  
 
The framework calls for the development of impacts estimate tables on an annual basis and an 
assessment of their accuracy and consistency with evaluation impacts.  The assessment of 
accuracy would be conducted much like it was done in this report by comparing predicted values 
to known simulated impacts.  The accuracy assessment and underlying data would be made 
available for review by the system operators or its evaluation subcontractor.  This allows system 
operators to verify the accuracy of the deemed savings in the impact estimate tables.  In addition, 
a check for consistency of results is recommended.  This involves comparing evaluation impacts 
at the end of the summer or year to the impact estimated from the tables and used for settlement.  
The results should agree.  If they do not, it is an indicating that the impact estimate tables used in 
the prior summer were inaccurate.  An option is to trigger adjustment to the settlement payments 
if the difference is greater than a pre-specified threshold – e.g., 10% of total payments. 
 
One of the key constraints on smart meter data is the granularity of data collection, which is 
often limited to 15-minute or hourly interval in order to remain compatible with billing system 
and pre-existing data management systems.  In contrast, settlement in real time markets is often 
at five minute increments.  With ancillary services, the bulk of payments are tied to being on 
stand-by to deliver a resource with short notices and little ramp time.  Only a small fraction of 
payments is associated with the few instances when spinning reserves are in fact dispatched.  An 
option is for providers of AC load reduction to simply forego payments for electricity deliver and 
focus on stand-by payment and capacity payments.  
 
While tables with pre-calculated load reductions per AC unit provide accurate estimates of 
demand reductions over course of the summer, they currently lack the precision needed for grid 
operations.   Since the tables are based in part on annual evaluation results, they reflect any 
measurement error in those evaluations.  Overall, when and where possible, it is highly 
recommended that evaluation impacts rely on random assignment of load control operations, 
large sample sizes and a weather matched difference-in-differences calculation.  As discussed 
earlier, smart meters allow the use of larger sample sizes at lower costs and produce highly 
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accurate impacts.  Improving the measurement of the annual evaluation measurements should 
improve the accuracy of the tables.  It is critical to continue expanding the body of empirical data 
used to develop the tables and, in particular, systematically include operations under different 
weather conditions and event hours.  With these steps, it may be possible to reduce the 
uncertainty enough to utilize tables with pre-calculated load reductions per AC unit for 
operations.    
 

Figure 5-1: Settlement Framework with Impact Estimate Tables (Deemed Savings) 

 
 

5.3 Costs of settlement  

Table 5-2 provides a range of estimated costs of settlement using AC end-use data, household 
data and a deemed savings approach relying on impact estimate tables.  The key difference 
between each of the estimates is the data collection equipment, recruitment and installation costs.  
Collecting AC end-use data for settlement imposes substantial incremental costs.  Data collection 
devices with remote data retrieval capabilities range from $300 to $1,500 per unit depending on 
the functionality.  The estimates in Table 5-1 assume the needed functionality can be obtained at 
the lower end of the cost spectrum.  In addition, it is necessary to factor in the cost of recruiting 
customers willing to have the devices installed.  Acquisition and incentive cost are typically 
around $100 to $150 dollars per AC unit.  Lastly, installing devices costs between $150-$250 per 
AC unit, depending on the complexity of the data collection device, AC units per location, 3-
phase versus single phase power and other factors.  These costs can add up quickly.  To produce 
reliable estimates with AC data, the sample needs to be at least 500 units and preferably 1,000 
units.   Deploying the data collection system for 500 AC units can cost between $300,000 to 
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$500,000.  The costs multiply if the impact estimates needs to be precise for specific geographic 
locations such as local capacity areas.  If, for example, separate samples are required for the 16 
load aggregation points in PG&E territory, this would expand costs to $4,800,000 to $8,000,000.  
While the data collections system can work for multiple years it would need to be updated to 
accurately changes in the population of load control participants.   The additional costs 
associated with using AC end-use data for settlement are trivial compared to the data collection. 
 
Using smart meter household data for settlement avoid most of those costs since the data 
collection systems are already in place.  Deploying very large samples impose very small 
incremental costs in comparison to expanding sample sizes with AC end-use data.  This allows 
for a high degree of precision highly localized impact estimates.  The incremental data collection 
costs are limited to adjusting data collection intervals to read at 15-minute intervals and 
incremental data query costs.  The primary cost is associated with the load reduction capability 
foregone by not dispatching a randomly selected group of customer during each load control 
operation.  Other costs such as sample design, calculation of impacts and verification are similar 
to those with AC end-use data.  There are two drivers for the range of uncertainty in the costs of 
impact and verification.  One is the total hours to manage the data and update the calculations.  
The second source of uncertainty is the number of instances the program would be dispatched in 
order to help provide stabilize the electricity grid.  
 

Table 5-2: Estimated Settlement Costs By Data Source 

Component 
AC End-use Data Household  Data Impact Estimate 

Tables 

Lower 
Bound 

Upper 
Bound 

Lower 
bound 

Upper 
Bound 

Lower 
bound 

Upper 
Bound 

Recommended Sample Size 500 1,000 1,000 2,000 Part of M&E 

Sample design and operations 
planning 

$10,000 $20,000 $10,000 $20,000 Part of M&E 

Data collection - installation and 
equipments costs per AC unit 

$600 $1,000 $5 $5 $5 $5* 

Data transmittal $10,000 $50,000 N/A N/A N/A N/A 

Calculation of Impacts $40,000 $120,000 $40,000 $120,000 $20,000 $40,000 

Verification Costs (ISO) $20,000 $60,000 $20,000 $60,000 $15,000 $30,000 

Update Impact Estimate Tables N/A N/A N/A N/A $30,000 $60,000 

 
Impact estimate tables do not pose substantial incremental costs if they rely on the same data 
collection, sample design and calculation of impacts generally used for routine measurement and 
evaluation of program impacts.  In fact, the cost of calculating impacts is lower if they are 
aligned with the estimation of the evaluation impacts.  It simplifies the settlement calculation to 
multiplying the relevant impact estimate from the table with the numbers of customer dispatched 
in each geographic location.  It also lowers the system operator costs of verifying impacts since 
this is done once a year instead of for each and every load control operation.  In exchange, there 
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is and additional cost of producing the impact estimates tables and reassessing their accuracy 
once per year.  
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Appendix A. How and Why Does Baseline Accuracy Differ From Demand 
Reduction Accuracy 

 
Both estimates of the counterfactual – what customers would have used in the absence of AC 
load curtailment – and demand reductions can contain error.  While these errors are closely 
related, they are not one and the same.  Importantly, different calculation methods compute 
demand reductions differently.  The most common approach – day-matching or weather-
matching baselines – calculate demand reduction as the difference between the estimate of the 
usage without curtailment operations and the actual loads during curtailments.  On the other 
hand, regression models calculate demand reduction based on the regressions coefficients.  The 
accuracy of regression results does not depend on how well the model explains electricity.  As 
long as other factors are not confounded with the variables representing the curtailment 
operations, the regression models provide accurate estimates of the demand reduction.  This is 
explained in more detailed below.  With the third method, use of control groups, the demand 
reduction is calculated as the difference in load of customers that did and did not experience the 
AC curtailment.  
 
A.1. Weather and Day-matching Baselines  

 
Weather and day-matching baselines are within-in subject estimators.  They rely on the 
customers own usage during a set of days where loads were not curtailed to infer what electricity 
use would have been absent curtailment operations – a baseline.  Because these methods 
calculate demand reductions as the difference between the baseline and the actual loads during 
curtailments, errors in the baseline are magnified errors in the demand reduction estimates.  
 
For example, if the actual demand reduction and true counterfactual – the electricity use absent 
curtailment – are 2 MW and 10 MW, a 5% upward bias in the settlement baseline will produce a 
baseline of 10.5 MW and a calculated load reduction of 2.5 MW (10.5 MW minus the metered 
load of 8 MW).  While the baseline upward bias is 5%, the estimated demand reduction is biased 
upward by 25%; it is 2.5 MW rather than the actual 2.0 MW.  If instead the true demand 
reduction were lower, say 1.0 MW (10%), a day-matching or weather-matching method would 
estimate a load reduction of 1.5 MW (10.5 MW minus the metered load of 9 MW).  With the 
smaller load reduction, the 5% upward bias in the settlement baseline leads to a 50% upward bias 
in the estimated reductions – 1.5 MW of load reduction was estimated rather than the actual 1.0 
MW.  In general, relatively small baseline errors translate into larger errors in the estimated 
demand reductions.  
 
Table A-1 summarizes how the percent error in demand reduction estimates varies as function of 
baseline error and the true percent demand reduction.  
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Table A-1: Relationship Between Load Reduction, Baseline Error and Impact Error 

 
Actual Percent Demand Reduction 

5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 

B
as

el
in

e 
P

er
ce

n
t 

E
rr

o
r 

-10.0% -200.0% -100.0% -66.7% -50.0% -40.0% -33.3% -28.6% -25.0% -22.2% -20.0% 

-8.0% -160.0% -80.0% -53.3% -40.0% -32.0% -26.7% -22.9% -20.0% -17.8% -16.0% 

-6.0% -120.0% -60.0% -40.0% -30.0% -24.0% -20.0% -17.1% -15.0% -13.3% -12.0% 

-4.0% -80.0% -40.0% -26.7% -20.0% -16.0% -13.3% -11.4% -10.0% -8.9% -8.0% 

-2.0% -40.0% -20.0% -13.3% -10.0% -8.0% -6.7% -5.7% -5.0% -4.4% -4.0% 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

2.0% 40.0% 20.0% 13.3% 10.0% 8.0% 6.7% 5.7% 5.0% 4.4% 4.0% 

4.0% 80.0% 40.0% 26.7% 20.0% 16.0% 13.3% 11.4% 10.0% 8.9% 8.0% 

8.0% 160.0% 80.0% 53.3% 40.0% 32.0% 26.7% 22.9% 20.0% 17.8% 16.0% 

10.0% 200.0% 100.0% 66.7% 50.0% 40.0% 33.3% 28.6% 25.0% 22.2% 20.0% 

*The cells reflect the percent error in demand reduction estimates as a function of the percent 
error in the baseline and the true percent demand reduction. 

 

A.2. Regression Models 

 
Regression models calculate demand reduction based on the regressions coefficients.  Unlike day 
and weather-matching baselines, the accuracy of regression results do not depend on how well 
the regression model explains electricity.  As long as other factors are not confounded with the 
variables representing the curtailment operations, the regression models provide accurate 
estimates of the demand reduction.  
 
This point is counterintuitive at first and is best understood by considering an example were 
regression analysis is used to analyze and experiment.  For illustrative purposes, we simulated an 
experiment where a set of 1,500 customers was randomly assigned an intervention while a 
second set of 1,500 customers acts as a control.  Due to the random assignment, by definition 
other factors are not systematically related to the curtailments.  For simplicity, the intervention 
reduced demand by 15% across all hours.  Figure A-1 shows the actual loads with and without 
DR for the group that experienced the curtailment (which are known, because the experiment is 
simulated) and compares them to the regression predictions of loads with and without DR.  The 
regression model used did not attempt to explain electricity use patterns.  It simply modeled 
electricity use as a function of a constant and a variable indicating if the customer experienced 
the curtailment operation.  Not surprisingly, the regression model does a poor job at predicting 
electricity use patterns.  However, it calculates the demand reduction relatively well.  The 
regression model estimates a reduction of 16.4%, which is relatively close to the true reduction 
of 15.0%. 
 
In practice, a model that explains electricity use well typically minimizes the chance of 
confounding other factors with demand reductions.  However, the main point of the illustration is 
that the accuracy of regression results, unlike the day and weather-matching method, is not 
linked to how well the regression model explains electricity use. 
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Figure A-1: Actual Loads With and Without DR 

 

   
A.3. Control Groups 

 
With control groups, demand reductions are estimated as the difference between a group that did 
not have their AC loads curtailed and one that did.  The simplest way of calculating the demand 
reduction is to calculate the difference in electricity use between the two groups.  In essence, the 
electricity use pattern of the group that was not curtailed is used to infer what electricity use 
patterns would have been if the curtailed group had not been curtailed.  Ideally, the only 
systematic difference between the two groups is that one had their AC load curtailed and other 
group did not.  A lack of systematic differences between the two groups eliminates alternative 
explanations besides the AC curtailment.  The best way to ensure there are no systematic 
differences is to randomly assign customers to the curtailment and control groups and use large 
sample sizes.   
 
As with day and weather-matching baselines, errors in the counterfactual – which in this case 
was provided by the control group – are magnified in the demand reduction estimate.  
Importantly, smaller sample sizes can introduce a substantial amount of error.  Figure A-2 
illustrates this point.  The example is based on 300 customers randomly assigned to a curtailment 
group and another 300 randomly assigned to a control group.  The differences between the two 
groups are entirely due to random variation in sampling.  However, it is clear that control 
provides an inaccurate estimate of the true counterfactual.  During the event hours from 2 PM to 
6 PM the control underestimates the true counterfactual by 6.7%.  However, because the demand 
reduction is estimated as the difference between the observed control and curtailment group 
loads, the impacts are underestimated by 54.4%.  As with baseline methods, errors in the control 
group estimate of the counterfactual are magnified errors in the demand reduction estimate.  
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Figure A-2: Smaller Sizes Can Introduce Error 
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Appendix B. Feeder, Household and Air Conditioner End-use Data Sources  

 
This appendix describes the feeder, household and AC end-use data sources used in the analysis. 
The various estimation methods were tested on feeder, household and AC end-use data 
representative of the PG&E SmartAC population.  The choice of data source affects both the 
coverage across the service territory and the ability to produce impacts for localized areas, if 
needed for settlement.  In each instance, a sample representative of residential AC units in the 
PG&E direct load control program, SmartAC was drawn.  The intent was twofold: to assess the 
extent to which data was available across the territory and to ensure representative results.  
Rather than select the example feeders with high penetration levels, as had been done in prior 
studies, the goal was to assess whether the data sources could be widely used for program 
settlements.  
 
B.1. Feeder Data 

 
There are attractive features of feeder data from an operator's perspective.  While not universal, 
the data collection system already tracks data in small increments, often times at intervals well 
below a minute.  It meets a common system operator requirement for settlement at five-minute 
intervals.  Another key advantage is that many feeders are able to transmit near real time data on 
electricity use.  If there is a significant drop in feeder electricity load, the operators can see it and 
confirm it.  The advantages of feeder data has less to do with the data itself and more to do with 
existing data collection systems and familiarity with them.  
 
In total, 10% of the roughly 2,040 feeders with 1 or more customers enrolled in PG&E's AC 
control program were sampled.  A proportional random sample was used to randomly select 10% 
of feeders across each climate region and feeder size strata identified.  PG&E attempted to 
extract five-minute interval data for each feeder sampled.  
 
Table B-1 summarizes the characteristics of the feeders sampled and those that did indeed have 
five-minute level data available.  For clarity, all comparisons of the distribution across PG&E 
territory are at the AC unit level.  Of the 204 feeders sampled, 85 (41.7%) of them tracked 
minute level feeder data.  However, those same 85 feeders accounted for 54% of the control 
devices in 204 feeders initially sampled.  The feeders with interval data available were generally 
larger than the average feeder.  They both had more residential accounts than the population of 
feeders – 2,176 versus 1,811 accounts per feeder – and had a large number of accounts enrolled 
in the AC control program – 81 versus 62 per feeder.  More importantly, a disproportionate share 
of the feeders with data is in the Greater Bay Area.  In total, 63% of the AC units linked to 
feeders with data is in the Greater Bay Area while only 33% of all AC units in the program are in 
the area.  This has several consequences, first the AC units in feeders with data experience 
milder weather and have less AC use than those in the population.  This is evidenced by the 
difference in the weather sensitivity metric.  Those accounts also have a smaller share of 
customers on the low income tariff than the broader SmartAC populations.  Simply put, not only 
is the feeder data unavailable for a substantial share of the controllable AC units, but it is not 
representative of the program and severely under represents customers in hotter areas.  
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Table B-1: Comparison of SmartAC Feeder Population, Sample and Actual Available Data 

Metric 
SmartAC 

Population 
Feeders 
Sampled 

Actual Feeders 
Where Data 

was Available 

Number of feeders 1998 204 85 

Avg. residential accounts per feeder 1,811 1,812 2,176 

Avg. SmartAC enrolled accounts per feeder 62 62 81 

Total residential SmartAC accounts 124,047 12,451 6,713 

Total Control Devices 140,934 14,146 7,627 

2009 average monthly kWh 716 717 711 

Weather sensitivity1 0.39 0.38 0.25 

Low income rate (%) 27% 26% 15% 

Greater Bay Area 33% 37% 63% 

Greater Fresno 21% 22% 8% 

Humboldt 0% 0% 0% 

Kern 3% 2% 3% 

Northern Coast 6% 6% 8% 

Sierra 12% 11% 6% 

Stockton 10% 10% 0% 

Other 16% 12% 13% 

[1] Weather sensitivity was calculated as the correlation between monthly usage (kWh) and total CDH (Base 
70°F) over the same time period. 

 
B.2. Household Data 

 
Until relatively recently, household data on hourly and sub-hourly electricity use was not 
available for most customers and was expensive to collect.  When it was available, it usually was 
for a sample of customers representative of the general population.  Substantial changes in 
technology, and in particular the adoption of smart meters, have made settlement with household 
data feasible.  As of November 2010, over 82% of the 125,000 SmartAC participants had smart 
meters in place and nearly all residential customers will have smart meters by the end of 2011.  
In total, 70% of SmartAC participants had smart meter data available throughout the summer 
of 2010.   
 
The smart meter household data was drawn from the same 204 feeders sampled for which feeder 
data was sought in order to allow direct comparisons.  For each of the 204 feeders, 100 
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households in the AC control program were sampled if available.  lf enrollment in a feeder was 
lower, the full population was included in the analysis.  The smart meters in each feeder were 
weighted for the overall number of feeder households enrolled in the AC control program.  For 
example, if a feeder had 450 participating households, each of the 100 randomly sampled in the 
feeder was assigned a weight of 4.5, since they each represent 4.5 households.  In another feeder 
with 68 participating households, all of the customers with smart meters were sampled and 
assigned a weight of 1.0.   
 
While coverage by smart meters will be nearly universal in PG&E territory within a year, not all 
of them had smart meters in place by the summer of 2010, mainly because the installation of 
those meters was still underway.  Table B-2 compares the SmartAC population to the feeders 
sampled, to the actual data obtained and weighted.  Unlike feeder data, it was known in advance 
that 8,800 of the 12,450 accounts had smart meters in place throughout the 2010 summer.  In 
total, using the sampling strategy described in the above paragraph, data for 6,010 households 
was requested and data for 5,988 households (99.6%) of the data was delivered.  While only 132 
of 204 feeders sampled had customers with smart meters in place, the meters were already 
located where it counted and provided representation for 88.5% (12,530/14,146) of the AC units.  
This is due to how the smart meters were deployed in the PG&E territory.  Meter installations 
were first deployed in warmer parts of the territory, were AC penetration is higher and, by 
connection, participation in SmartAC is higher.  The meter installations have also covered most 
urban and suburban areas, where feeders generally have a larger number of connected accounts.  
 
Table B-2: Comparison of SmartAC Population, Feeders Sampled and Household Data Sampled 

Metric 
SmartAC 

Population 
Feeders 
Sampled 

Household Data 
Sampled  

(No Weights) 

Household 
Data Sampled 

(Weights) 

Number of feeders 1998 204 132 132 

Avg. residential accounts per feeder 1,811 1,812 2,176 2,176 

Avg. SmartAC accounts per feeder 62 62 81 81 

Residential SmartAC accounts 124,047 12,451 5,988 11,029 

Control devices 140,934 14,146 6,803 12,530 

2009 average monthly kWh 716 717 725 726 

Weather sensitivity1 0.39 0.38 0.43 0.39 

Low income rate (%) 27% 26% 30% 26% 

Greater Bay Area 33% 37% 29% 37% 

Greater Fresno 21% 22% 32% 25% 

Humboldt 0% 0% 0% 0% 

Kern 3% 2% 4% 2% 

Northern Coast 6% 6% 5% 5% 

Sierra 12% 11% 9% 10% 

Stockton 10% 10% 9% 12% 

Other 16% 12% 13% 10% 
[1] Weather sensitivity was calculated as the correlation between monthly usage (kWh) and total CDH (Base 70°F) over the 
same time period. 
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As noted earlier, by default, PG&E stores residential smart meter data at hourly intervals and can 
adjust the interval of data collection down to 15-minute intervals without requiring major 
modifications to billing systems.  
 
B.3. Air Conditioner End-use Data 

 
Unlike feeder or household data, AC end-use data is not available without special effort to 
sample AC units, install data collection devices and retrieve them.  This has two implications.  
First, coverage with AC units is limited and requires the use of samples.  Second, the cost per 
unit sampled is substantially higher and depending on the technology capabilities can impose 
high data retrieval costs.   
 
PG&E collected AC end-use data at five-minute intervals or less in 2008, 2009 and 2010, 
primarily to evaluate impacts at the program level.  In 2008, the residential sample included 
roughly 700 AC units and 20 experimental operations lasting 4 to 6 hours each were called to 
better understand load reduction capabilities.  In 2009, three different residential samples of AC 
units were employed.  The first was designed to reflect the SmartAC population and consisted of 
547 AC units.  The sample was stratified by three climate regions, household vintage and 
intentionally sampled areas of the Central Valley.  The AC units for this sample were not 
controlled.  The second 2009 sample targeted AC load of customers that were not enrolled in the 
SmartAC program in order to assess whether participants used their ACs differently.  The third 
sample consisted of 500 AC units concentrated on 4 feeders and was designed to assess the 
potential for using AC load control for spinning reserves.  As noted earlier, the 2,000 AC units in 
those 4 feeders were instructed to fully shed load nearly 70 times for 15 minutes at a time.  In 
2010, the residential end-use sample consisted of 330 AC units.  Those units were called for 14 
control events lasting 4 hours each.   
 
To test settlement alternatives, the 2009 primary program sample consisting of 547 AC units was 
used. Because no events were called, the sample reflects how customers enrolled in SmartAC 
naturally operate their AC units.  It contains unperturbed AC use data.  In contrast, the AC units 
in the 2008 and 2010 samples were controlled on a large number of days, particularly when it 
was hot.  Because AC end-use data is not universal and required using a sample, it cannot 
provide information for specific feeders as was the case for the feeder and household data. 
 



 

77 
 

Appendix C. Mathematical Expression of Regression Models 

 No. Model Description Mathematical Expression 
1 Treatment variables and no day or hourly lags or leads. 

This model estimates demand reductions as a function of the 
temperature during the hour, as measured by cooling degree 
hours (CDH), and total heat intensity in the day prior to 
curtailment (past24hrCDH).  Several additional variables are 
included to explain variation in electricity use so the demand 
reduction signal can be better detected, including:  

 The effect of  hour, weekend, and school vacations 
 Total heat intensity in the day prior  
 Heat intensity on during each time period 
 The interaction between school vacation periods and 

the use of cooling. 
The model can be applied for both ex post estimation and to 
forecast available AC loads and demand reduction potential. 
It uses data from prior curtailments to inform the estimate of 
the demand reduction for the curtailment in question.  
  

  

, , , , · , · , · 24 ,

   , · 24 , , · , , , · ,         

, · · , , , · · , ,

  , · , , · , , , · , , · 24 ,

  , ,  

2 Treatment variables with a hourly lag. 
This model estimates demand reductions as a function of the 
temperature during the hour, as measured by cooling degree 
hours (CDH), and total heat intensity in the day prior to 
curtailment (past24hrCDH).  The same additional variables as 
in Model 1 are included to explain variation in electricity use 
so the demand reduction signal can be better detected. In 
addition, this model includes the electricity use two hours 
prior to the time period in question to explain variation in 
electricity use.  The model can be applied for ex post 
estimation.  It requires continuous data uploading to use it for 
forecasting available AC loads and demand reduction 
potential for operations. 

, , , , · , · , · 24 ,

, · 24 , , · , , , · ,

, · · , , , · · , ,

  , · , , · , , , · , , · 24 ,

  , · , ,   , ,  



 

78 
 

 No. Model Description Mathematical Expression 
3 Treatment variables with hourly lags and leads. 

Like Models 1 and 2, this model estimates demand reductions 
as a function of the temperature during the hour, as measured 
by cooling degree hours (CDH), and total heat intensity in the 
day prior to curtailment (past24hrCDH).  The same additional 
variables as in Model 1 are included to explain variation in 
electricity use so the demand reduction signal can be better 
detected. In addition, this model includes the electricity use in 
both hours preceding and after the time period in question to 
explain variation in electricity use.  The model can be applied 
for ex post estimation, but cannot be used to forecast 
available AC loads and demand reduction potential for 
operations. 

 

, , , , · , · , · 24 ,

  , · 24 , , · , , , · ,            

, · · , , , · · , ,

  , · , , · , , , · , , · 24 ,

  , · , ,
, , ,

  , ,  

4 No treatment variables but use of hourly lags and leads.  
This model differs from the prior three models in that the 
demand reductions is not explicitly calculated using 
regression coefficient. Rather the regression is used to 
provide an estimate of load without curtailment and the 
impacts are calculated as the difference between the reference 
load and the metered load during the curtailment.  Except for 
the lack of treatment variables, the explanatory variables are 
the same as in Model 3.  
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Appendix D. Example of Same-day Adjustment Calculation 

 
A same-day adjustment is a way to reduce the error between the baseline and actual loads during 
an event period.  The idea behind the adjustment is that the period before the event – when 
customers’ loads are unperturbed – can be used to check the accuracy of the baseline calculation 
for that day and adjust the baseline up or down to make it more accurate.  If the baseline 
calculation is below the actual load before the event, then it is assumed that the baseline would 
also be below what the unperturbed load would have been during the event period.  Similarly, if 
the baseline is above the actual load before the event, it is also assumed to be above what the 
unperturbed load would have been during the event period.  In other words, it is assumed that 
changes in pre-event are not due to load shifting to those hours or gaming.  This relationship 
between the two loads is used to determine the same-day adjustment for that customer.  The 
calculation is illustrated using a concrete example: 
 
Suppose a 3-hour same-day adjustment is to be applied to a customer during an event window of 
3 PM to 7 PM.  The hours 11 AM to 2 PM  are used to determine the adjustment (this includes a 
one-hour buffer between the adjustment period and the event period – this buffer 
is explained below).   
 
Suppose a customer has the actual hourly load shown in Table D-1 below.  For simplicity of the 
example, only unperturbed load is considered – that is, the customer’s use is known in the 
absence of the event.  This allows the focus to be on the effect of the adjustment and how the 
adjusted baseline compares to the number it is supposed to predict.  Suppose the 10-of-10 
baseline method with no adjustment is used for this customer giving the baseline also shown in 
Table D-1.  Comparing across loads during the same hour, it is obvious that the unadjusted 
baseline is higher than the actual – both before the event and during the event.  The baseline 
therefore over-predicts the actual load. 
 
Table D-1: Actual Use and Unadjusted Top 10-of-10 Baseline for a Particular Customer 

Hour Starting 
10:00 
AM 

11:00 
AM 

12:00 
PM 

1:00 
PM 

2:00 
PM 

3:00 
PM 

4:00 
PM 

5:00 
PM 

6:00 
PM 

7:00 
PM 

Actual Unperturbed Use 
(kW) 4.2 4.0 3.7 4.1 4.0 4.1 4.0 4.1 3.9 3.9 

10 of 10 Baseline with No 
Adjustment (kW) 5.1 5.0 4.8 5.1 4.9 5.0 5.1 5.3 4.9 5.0 

 
The same-day adjustment consists of applying a multiplier to the baseline during the event 
period.  To calculate that multiplier two numbers must be calculated: the average actual use 
during the pre-event period 11 AM to 2 PM and the average baseline with no adjustment during 
the same period.  In this example, the average actual use during the period is: 
 

4.0 3.7 4.1
3 3.93   
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The average baseline with no adjustment is: 
 

55.0 4.8 5.1
3 4.97   

The multiplier to be applied is the ratio of the average actual use to the average 
unadjusted baseline: 

3.93 
4.97  0.79 

The rationale behind applying this multiplier to the baseline during the event period is that given 
the proximity of the pre-event period to the event window, the baseline percentage error would 
be roughly the same during the event window as it was during the pre-event period.  Again, this 
assumes customers are not shifting load to pre-event hours.  To adjust the baseline closer to what 
the actual load would be without an event, the baseline of each event hour is multiplied by the 
actual-to-baseline load ratio.  In this case, that ratio is 0.79. 
 
The result of this calculation for this example is shown in Table D-2.  The numbers in the 
adjusted row equal the numbers in the unadjusted row, multiplied by 0.8.  The adjusted baseline 
numbers are much closer to the actual use. 
 

Table D-2: Unadjusted 10-of-10 Baseline and 10-of-10 Baseline with Four-hour Same-day 
Adjustment for a Particular Customer 

Hour Starting 
3:00 
PM 

4:00 
PM 

5:00 
PM 

6:00 
PM 

Top 10-of-10 baseline with no adjustment (kW) 5.0 5.1 5.3 4.9 

Top 10-of-10 baseline with same-day adjustment (kW) 4.0 4.0 4.2 3.9 

Actual Unperturbed Use (kW) 4.1 4.0 4.1 3.9 

 
Figure D-1 shows the same example graphically.  The black arrows identify the 4-hour event 
period lasting from 3 PM  to 7 PM  and the 3-hour pre-event period from 11 AM  to 2 PM  (with 
a buffer from 2 PM  to 3 PM).  The pre-event period baseline average is 5 kW, while the pre-
event actual use is 4 kW.  This results in an actual-to-baseline load ratio of 0.8.  Multiplying the 
baseline load during each event hour by the ratio gives the adjusted baseline.  Notice how the 
adjusted load is much closer to the unperturbed actual load during the event hours.  The error 
between the baseline and actual loads has been reduced dramatically.  This reduces load impact 
errors and generates more accurate settlement payments.  Figure D-1 shows the effect baseline 
adjustment has on load impact errors. 
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Figure D-1: Same-day Adjustment 

 

Assume the contracted reduction for the customer in this example is 3 kW.  However, the 
unperturbed actual load of the customer is only about 3.9 kW.  Therefore, this customer needs to 
reduce load by only 2 kW to achieve full compliance with settlement rules that do not require in-
day adjustment.  This equates to a load impact error percentage of roughly 33%.  The utility 
would only receive 66% of the reduction for which it has paid.  Same-day adjustments, by 
bringing the baseline closer to the unperturbed actual load, can dramatically reduce this error and 
ensure utilities receive a greater share of the expected reduction.  The reverse is also true.  Some 
customers have to deliver more than the contracted demand reduction to comply with settlement 
rules.  They essentially deliver more demand reduction than they are paid for.  In-day 
adjustments generally reduce the degree of over and under payments to individual 
settlement accounts. 
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Appendix E. Average Air Conditioner Demand by Climate Region, Heat Intensity and Hour 

Table E-1: Very Hot Climate Region (Central Valley - Fresno/Bakersfield) 
Hour 
Ending 

0 CDD 
1-2 
CDD 

3-4 
CDD 

5-6 
CDD 

7-8 
CDD 

9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23-24 
CDD 

24 CDD 
or more 

1:00 0.01 0.03 0.04 0.05 0.05 0.08 0.06 0.09 0.11 0.15 0.17 0.22 0.26 0.31 

2:00 0.01 0.01 0.02 0.03 0.03 0.05 0.05 0.06 0.07 0.10 0.12 0.15 0.18 0.22 

3:00 0.01 0.01 0.02 0.02 0.01 0.03 0.03 0.04 0.04 0.06 0.08 0.11 0.12 0.16 

4:00 0.01 0.01 0.01 0.02 0.01 0.03 0.03 0.03 0.02 0.05 0.06 0.07 0.09 0.12 

5:00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.04 0.05 0.06 0.09 

6:00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.04 0.05 0.06 0.08 

7:00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.06 0.09 

8:00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.04 0.05 0.06 0.10 

9:00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.05 0.06 0.09 0.16 

10:00 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.05 0.07 0.11 0.15 0.24 

11:00 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.09 0.14 0.23 0.26 0.39 

12:00 0.02 0.02 0.01 0.04 0.04 0.04 0.08 0.08 0.11 0.18 0.29 0.39 0.43 0.59 

13:00 0.03 0.01 0.02 0.05 0.06 0.09 0.12 0.16 0.24 0.33 0.48 0.63 0.70 0.82 

14:00 0.02 0.01 0.02 0.07 0.09 0.16 0.18 0.28 0.43 0.55 0.71 0.92 1.00 1.06 

15:00 0.02 0.02 0.05 0.09 0.14 0.24 0.30 0.43 0.66 0.82 0.96 1.18 1.26 1.29 

16:00 0.02 0.04 0.05 0.15 0.20 0.32 0.41 0.63 0.90 1.06 1.19 1.44 1.44 1.48 

17:00 0.02 0.07 0.06 0.21 0.26 0.42 0.52 0.78 1.06 1.24 1.35 1.62 1.67 1.56 

18:00 0.02 0.08 0.06 0.25 0.31 0.49 0.58 0.85 1.19 1.29 1.42 1.65 1.68 1.58 

19:00 0.02 0.09 0.07 0.23 0.30 0.42 0.54 0.76 1.09 1.23 1.32 1.54 1.60 1.54 

20:00 0.01 0.04 0.07 0.22 0.22 0.35 0.40 0.64 0.91 1.02 1.09 1.31 1.43 1.37 

21:00 0.03 0.03 0.06 0.12 0.16 0.28 0.32 0.51 0.72 0.78 0.87 1.04 1.16 1.12 

22:00 0.02 0.02 0.05 0.08 0.12 0.21 0.23 0.34 0.51 0.57 0.63 0.77 0.88 0.88 

23:00 0.03 0.03 0.03 0.10 0.11 0.16 0.17 0.26 0.31 0.39 0.43 0.52 0.62 0.62 

0:00 0.02 0.09 0.01 0.05 0.07 0.08 0.10 0.15 0.21 0.25 0.27 0.34 0.43 0.42 
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Table E-2: Hot Climate Region (Central Valley - Sacramento/Stockton/Fairfield) 
Hour 

Ending 
0 CDD 1-2 CDD 3-4 CDD 5-6 CDD 7-8 CDD 

9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23-24 
CDD 

1:00 0.02 0.09 0.09 0.06 0.12 0.11 0.11 0.16 0.20 0.21 0.23 0.26 0.11 

2:00 0.02 0.06 0.06 0.04 0.08 0.08 0.07 0.12 0.15 0.15 0.16 0.18 0.17 

3:00 0.01 0.04 0.04 0.03 0.06 0.05 0.05 0.08 0.12 0.12 0.12 0.13 0.15 

4:00 0.01 0.03 0.04 0.02 0.05 0.04 0.04 0.06 0.08 0.09 0.08 0.10 0.13 

5:00 0.01 0.02 0.02 0.02 0.04 0.04 0.03 0.05 0.06 0.06 0.07 0.08 0.09 

6:00 0.00 0.02 0.02 0.01 0.03 0.03 0.02 0.04 0.05 0.05 0.08 0.07 0.06 

7:00 0.00 0.01 0.01 0.01 0.02 0.02 0.01 0.03 0.04 0.03 0.08 0.06 0.13 

8:00 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.05 0.13 0.09 0.18 

9:00 0.01 0.03 0.02 0.02 0.03 0.03 0.03 0.04 0.07 0.06 0.14 0.13 0.30 

10:00 0.01 0.04 0.04 0.03 0.04 0.04 0.04 0.06 0.13 0.11 0.18 0.22 0.65 

11:00 0.02 0.06 0.06 0.05 0.07 0.08 0.08 0.10 0.22 0.18 0.28 0.35 0.77 

12:00 0.02 0.08 0.10 0.08 0.10 0.12 0.14 0.17 0.35 0.34 0.41 0.51 1.14 

13:00 0.04 0.11 0.13 0.12 0.16 0.18 0.22 0.29 0.50 0.55 0.60 0.67 1.34 

14:00 0.05 0.16 0.17 0.18 0.26 0.29 0.36 0.43 0.70 0.72 0.88 0.91 1.51 

15:00 0.07 0.22 0.24 0.24 0.37 0.40 0.53 0.59 0.91 1.04 1.24 1.19 1.62 

16:00 0.08 0.30 0.30 0.33 0.50 0.56 0.72 0.81 1.17 1.32 1.58 1.37 1.71 

17:00 0.12 0.41 0.39 0.45 0.65 0.76 0.97 1.01 1.38 1.54 1.81 1.48 1.69 

18:00 0.14 0.44 0.43 0.47 0.73 0.84 1.10 1.13 1.43 1.61 1.82 1.51 1.74 

19:00 0.14 0.40 0.39 0.48 0.69 0.83 1.12 1.13 1.39 1.48 1.89 1.45 1.65 

20:00 0.11 0.33 0.27 0.38 0.52 0.66 0.93 0.95 1.16 1.24 1.54 1.23 1.45 

21:00 0.09 0.22 0.19 0.26 0.35 0.48 0.69 0.72 0.89 0.98 1.25 1.05 0.86 

22:00 0.06 0.17 0.15 0.18 0.28 0.35 0.49 0.54 0.68 0.76 0.91 0.87 0.73 

23:00 0.04 0.12 0.10 0.11 0.20 0.22 0.35 0.35 0.46 0.50 0.61 0.64 0.55 

0:00 0.04 0.09 0.07 0.09 0.15 0.15 0.22 0.23 0.35 0.36 0.43 0.46 0.38 
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Table E-3: Warm Climate Region (Bay Area - Diablo Valley / San Jose) 

Hour 
Ending 

0 CDD 
1-2 

CDD 
3-4 

CDD 
5-6 

CDD 
7-8 

CDD 
9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23-24 
CDD 

1:00 0.02 0.03 0.05 0.03 0.06 0.06 0.09 0.09 0.12 0.11 0.19 0.16 0.24 

2:00 0.01 0.02 0.04 0.02 0.03 0.03 0.07 0.09 0.09 0.07 0.12 0.16 0.25 

3:00 0.01 0.01 0.02 0.01 0.01 0.02 0.06 0.05 0.05 0.05 0.08 0.15 0.11 

4:00 0.00 0.00 0.02 0.01 0.01 0.01 0.05 0.04 0.04 0.03 0.03 0.15 0.08 

5:00 0.00 0.00 0.01 0.01 0.00 0.00 0.04 0.03 0.02 0.03 0.02 0.13 0.04 

6:00 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.04 0.02 0.03 0.01 0.08 0.02 

7:00 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.03 0.02 0.03 0.03 0.07 0.01 

8:00 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.04 0.02 0.03 0.02 0.10 0.04 

9:00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.04 0.02 0.03 0.01 0.06 0.06 

10:00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.04 0.02 0.03 0.03 0.07 0.09 

11:00 0.00 0.00 0.01 0.01 0.01 0.01 0.04 0.05 0.06 0.06 0.09 0.16 0.19 

12:00 0.00 0.01 0.01 0.02 0.01 0.01 0.06 0.07 0.12 0.14 0.18 0.36 0.49 

13:00 0.00 0.01 0.03 0.03 0.02 0.03 0.13 0.14 0.24 0.26 0.48 0.69 0.82 

14:00 0.01 0.02 0.04 0.05 0.06 0.07 0.23 0.22 0.39 0.42 0.81 1.02 1.35 

15:00 0.01 0.05 0.08 0.10 0.13 0.17 0.34 0.45 0.63 0.67 1.16 1.25 1.64 

16:00 0.03 0.08 0.12 0.19 0.25 0.29 0.50 0.68 0.93 1.01 1.41 1.72 1.87 

17:00 0.05 0.13 0.17 0.30 0.36 0.45 0.71 0.84 1.13 1.24 1.53 1.95 1.91 

18:00 0.05 0.15 0.19 0.35 0.47 0.58 0.84 0.98 1.29 1.32 1.66 2.01 2.35 

19:00 0.05 0.15 0.18 0.35 0.47 0.59 0.86 1.04 1.23 1.35 1.65 1.86 2.31 

20:00 0.04 0.11 0.14 0.26 0.34 0.43 0.72 0.89 0.96 1.10 1.54 1.67 2.11 

21:00 0.03 0.08 0.11 0.17 0.21 0.29 0.52 0.64 0.67 0.86 1.16 0.92 1.77 

22:00 0.02 0.05 0.08 0.10 0.16 0.19 0.33 0.44 0.47 0.64 0.67 0.75 1.02 

23:00 0.02 0.04 0.06 0.06 0.12 0.13 0.23 0.29 0.29 0.45 0.40 0.55 0.59 

0:00 0.01 0.03 0.04 0.05 0.06 0.08 0.15 0.18 0.18 0.25 0.28 0.36 0.28 
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Appendix F. Table of Demand Reductions per AC Unit by Climate Region, Heat Intensity and Hour 

Table F-1: Very Hot Climate Region (Central Valley - Fresno/Bakersfield) – 50% AC cycling 
Hour 

Ending 
0 CDD 

1-2  
CDD 

3-4  
CDD 

5-6  
CDD 

7-8  
CDD 

9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23-24 
CDD 

24  
CDD or 
more 

1:00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07 

2:00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05 

3:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 

4:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 

5:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 

6:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 

7:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 

8:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 

9:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 

10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 

11:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.06 0.09 

12:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.09 0.10 0.15 

13:00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.04 0.05 0.07 0.11 0.15 0.17 0.21 

14:00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.06 0.09 0.13 0.17 0.23 0.25 0.30 

15:00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.09 0.15 0.20 0.24 0.31 0.34 0.38 

16:00 0.00 0.01 0.01 0.02 0.04 0.06 0.09 0.14 0.21 0.26 0.31 0.39 0.40 0.44 

17:00 0.00 0.01 0.01 0.03 0.05 0.08 0.11 0.18 0.26 0.31 0.36 0.45 0.47 0.46 

18:00 0.00 0.02 0.01 0.04 0.06 0.09 0.13 0.20 0.30 0.33 0.38 0.46 0.48 0.47 

19:00 0.00 0.01 0.01 0.04 0.06 0.08 0.11 0.17 0.27 0.31 0.35 0.42 0.45 0.46 

20:00 0.00 0.01 0.01 0.03 0.04 0.06 0.08 0.14 0.22 0.25 0.27 0.34 0.39 0.39 

21:00 0.00 0.01 0.01 0.02 0.03 0.05 0.06 0.11 0.16 0.19 0.21 0.26 0.31 0.31 

22:00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.07 0.11 0.13 0.15 0.19 0.22 0.23 

23:00 0.00 0.01 0.00 0.01 0.02 0.02 0.03 0.05 0.06 0.08 0.10 0.12 0.15 0.16 

0:00 0.00 0.02 0.00 0.01 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.10 0.10 
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Table F-2: Hot Climate Region (Central Valley - Sacramento/Stockton/Fairfield) – 50% AC Cycling 

Hour 
Ending 

0 
CDD 

1-2 
CDD 

3-4 
CDD 

5-6 
CDD 

7-8 
CDD 

9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23 or more 
CDD 

1:00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.05 0.02 

2:00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 

3:00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 

4:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 

5:00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 

6:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

7:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 

8:00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 

9:00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 

10:00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.14 

11:00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.03 0.06 0.07 0.17 

12:00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.07 0.07 0.10 0.12 0.27 

13:00 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.06 0.11 0.12 0.15 0.17 0.34 

14:00 0.00 0.02 0.03 0.03 0.05 0.06 0.08 0.10 0.17 0.17 0.23 0.24 0.40 

15:00 0.01 0.03 0.04 0.04 0.08 0.09 0.12 0.14 0.22 0.26 0.34 0.33 0.47 

16:00 0.01 0.05 0.05 0.07 0.11 0.12 0.17 0.20 0.30 0.36 0.44 0.39 0.53 

17:00 0.01 0.07 0.07 0.09 0.14 0.18 0.24 0.25 0.35 0.42 0.51 0.43 0.53 

18:00 0.01 0.07 0.07 0.09 0.15 0.19 0.27 0.29 0.37 0.44 0.51 0.44 0.54 

19:00 0.01 0.06 0.06 0.09 0.14 0.18 0.26 0.28 0.35 0.38 0.51 0.41 0.49 

20:00 0.01 0.05 0.04 0.07 0.10 0.13 0.20 0.21 0.27 0.30 0.40 0.33 0.41 

21:00 0.01 0.03 0.03 0.04 0.06 0.09 0.13 0.15 0.18 0.22 0.29 0.25 0.19 

22:00 0.01 0.02 0.02 0.03 0.04 0.06 0.09 0.10 0.13 0.15 0.19 0.19 0.13 

23:00 0.01 0.02 0.02 0.02 0.03 0.03 0.06 0.06 0.08 0.09 0.12 0.13 0.09 

0:00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.06 0.06 0.08 0.09 0.05 
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Table F-3: Warm Climate Region (Bay Area - Diablo Valley / San Jose) – 50% AC Cycling 

Hour 
Ending 

0 
CDD 

1-2 
CDD 

3-4 
CDD 

5-6 
CDD 

7-8 
CDD 

9-10 
CDD 

11-12 
CDD 

13-14 
CDD 

15-16 
CDD 

17-18 
CDD 

19-20 
CDD 

21-22 
CDD 

23 or more 
CDD 

1:00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.02 0.03 0.02 0.04 

2:00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.04 

3:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.02 

4:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.01 

5:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 

6:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 

7:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 

8:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.01 

9:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.02 

10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.03 

11:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.05 0.06 

12:00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.10 0.13 

13:00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.05 0.05 0.10 0.19 0.20 

14:00 0.00 0.00 0.00 0.01 0.01 0.01 0.04 0.04 0.09 0.09 0.19 0.29 0.35 

15:00 0.00 0.01 0.01 0.01 0.02 0.03 0.06 0.10 0.15 0.16 0.29 0.37 0.47 

16:00 0.00 0.01 0.02 0.03 0.05 0.06 0.11 0.16 0.25 0.27 0.37 0.50 0.55 

17:00 0.00 0.02 0.02 0.05 0.08 0.10 0.17 0.21 0.30 0.33 0.41 0.57 0.54 

18:00 0.00 0.02 0.03 0.06 0.10 0.13 0.19 0.24 0.33 0.34 0.43 0.56 0.67 

19:00 0.00 0.02 0.02 0.06 0.09 0.13 0.19 0.24 0.31 0.34 0.42 0.51 0.62 

20:00 0.00 0.01 0.02 0.04 0.06 0.09 0.15 0.19 0.22 0.25 0.38 0.41 0.54 

21:00 0.00 0.01 0.01 0.02 0.03 0.05 0.10 0.13 0.14 0.19 0.26 0.21 0.42 

22:00 0.00 0.01 0.01 0.01 0.02 0.03 0.05 0.08 0.09 0.13 0.14 0.16 0.24 

23:00 0.00 0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.05 0.09 0.07 0.11 0.13 

0:00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.05 0.06 0.05 
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Appendix G. Effect on Sampling Error on Within Subject 
Calculation Methods 

Table G-1: Demand Reduction Margin of Error as a Function of Sampling and Estimation Error 
For Within-subject Calculation Methods 

Estimation 
Margin of Error 

(95% 
Confidence) 

Sampling Margin of Error (95% confidence) 

2% 4% 6% 8% 10% 12% 14% 16% 18% 20% 

2% 2.8% 4.5% 6.3% 8.2% 10.2% 12.2% 14.2% 16.2% 18.1% 20.2% 

4% 4.5% 5.7% 7.3% 8.9% 10.8% 12.6% 14.6% 16.5% 18.5% 20.4% 

6% 6.3% 7.2% 8.5% 10.0% 11.7% 13.4% 15.3% 17.1% 18.8% 20.9% 

8% 8.3% 9.0% 10.0% 11.3% 12.9% 14.5% 16.1% 18.0% 19.7% 21.5% 

10% 10.3% 10.7% 11.6% 12.9% 14.3% 15.6% 17.2% 18.9% 20.6% 22.3% 

12% 12.2% 12.5% 13.5% 14.3% 15.8% 17.0% 18.4% 20.2% 21.6% 23.4% 

14% 14.1% 14.6% 15.3% 16.1% 17.2% 18.4% 19.9% 21.3% 23.2% 24.4% 

16% 15.9% 16.5% 17.2% 18.0% 18.9% 20.0% 21.3% 22.7% 24.2% 25.4% 

18% 18.1% 18.5% 19.1% 19.8% 20.7% 21.6% 22.9% 24.2% 25.8% 26.8% 

20% 20.3% 20.5% 20.9% 21.6% 22.3% 23.4% 24.5% 25.8% 27.0% 28.4% 

22% 22.1% 22.3% 23.1% 23.3% 24.3% 25.2% 25.9% 27.2% 28.4% 29.5% 

24% 24.1% 24.4% 24.7% 25.4% 26.0% 26.9% 27.7% 28.9% 30.1% 31.3% 

26% 26.2% 26.3% 26.6% 27.1% 27.9% 28.8% 29.9% 31.0% 32.0% 32.6% 

28% 28.2% 28.2% 28.6% 29.3% 29.9% 30.3% 31.3% 32.6% 33.3% 34.7% 

30% 29.6% 30.5% 30.6% 31.4% 31.6% 32.3% 33.2% 34.1% 35.0% 36.4% 

32% 31.9% 32.1% 32.8% 32.9% 33.6% 34.1% 35.0% 36.3% 37.1% 38.0% 

34% 34.1% 34.1% 34.6% 35.1% 35.3% 36.0% 36.7% 37.6% 38.5% 39.7% 

36% 35.8% 36.6% 36.4% 37.0% 37.6% 38.2% 38.9% 39.3% 40.3% 41.3% 

38% 38.0% 38.4% 38.5% 39.0% 39.1% 40.0% 40.4% 41.6% 42.3% 42.9% 

40% 40.0% 40.1% 40.8% 41.0% 41.0% 41.4% 42.5% 43.0% 43.9% 45.2% 
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Appendix H. Process Used to Incorporate the Effect of Sampling Error 

To incorporate the effect of sampling error, the demand reduction estimation process was 
replicated 100 times using 100 different randomly drawn samples.  Figure H-1 describes the 
process for calculation methods that use control groups.  A random sample was drawn from the 
broader population and randomly split into two groups.31  For the first group, Group A, the 
demand reductions are simulated for each curtailment hour and subtracted from the loads.  As a 
result, the actual demand reduction and the true counterfactual were known, enabling a 
comparison of how close the impacts calculate with the control group were to the true demand 
reductions.  The unperturbed electricity use of the second group, Group B, was used to infer 
what AC electricity use would have been without the control operation and to estimate the 
demand reduction.  The impacts were calculated in two ways, with a simple comparison of 
means and using a weather-matched difference-in-differences calculation.  Both calculation 
methods are detailed in Section 4.5.4.  
 
The demand reduction estimation process was also replicated 100 times using 100 different 
randomly drawn samples for the impact estimation tables.  Figure H-2 shows the general 
framework used.  The approach was similar to the one used for simulating random assignment to 
curtailments, but differed in subtle ways.  First, a random sample of AC units is drawn from the 
population AC units with unperturbed end-use data.32  Customers in the sample are used to 
develop the impact tables – based on weather condition bins, hour of day, climate region and the 
historical percent demand reductions.  On the other hand, demand reductions were simulated for 
the entire population of AC units using the process described in Section 4 and Figure 4-1.  Next, 
the tables based on the sample were used to provide an estimate of the demand reduction for 
each simulated curtailment event.  In order to assess accuracy, the reductions predicted by tables 
were compared to the known impacts for the population.  The process was repeated 100 times for 
each sample size to quantify the effect of sampling error.  
  

                                                 
31 For the analysis, data from roughly 6,000 residential accounts was used and sampling for the bootstrap was conducted without 
replacement.   For AC end-use data however, data from only 537 AC units were available, as a result the sampling was done with 
replacements; meaning that a particular AC unit could be sampled more than once.  
 
32 For AC end-use data however, data from only 537 AC units were available.  Each of these units were replicated eight times to 
make up the population of AC units with end-use data.  The samples to develop the matrix were randomly drawn from the 4,300 
available observations.  This approach is similar to bootstrapping, a standard method for incorporating sampling error.   
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Figure H-1: Incorporation of Sampling Error into Settlement  
Alternatives with Random Assignment 
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Figure H-2: Incorporation of Sampling Error into Impact Estimate Tables 
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Appendix I. How the Data Source Affects Measurement  

The data source has a strong influence on the ability to accurately detect and attribute changes in 
energy consumptions.  The underlying change in electricity use is in the AC electricity use of 
customers enrolled in the program.  Electricity use from other end-uses in participant households 
or from customers that are not in the program add to the background noise.  The more extra data 
that is layered on top, the harder it is to detect and properly attribute changes in electricity use 
due to load control.  
 
To illustrate, Figure I-1 shows electricity use for a specific feeder in one of the warmest cities in 
the Bay Area, San Ramon, on August 24th, 2010, a day when peak temperatures reached 103°F.  
The feeder had roughly 2,700 electric accounts at the time, some of which were commercial.  It 
also had a relatively high penetration of the AC control program, SmartAC.  The feeder had 266 
electric accounts and 292 AC units under control at the time; which were roughly 10% of the 
accounts.  The penetration exceeded the penetration in over 90% of the feeders in PG&E 
territory. 
 

Figure I-1: Electricty Use for a Specific Feeder in San Ramon on August 24th, 2010 

 

The graph on the left shows the electricity use on that feeder, while the graph on the right 
provides a more detailed look at the household and estimated AC use for customers enrolled in 
the AC control program.  The overwhelming share of electricity use on the feeder, 92%, comes 
from electric accounts that are not enrolled in the program.  In addition, for most hours of the 
day, the AC load is less than half of the household load.  In any other, cooler day, the AC load 
would be a smaller share of the household electricity use.  If we assume a 35% reduction of the 
AC electricity use during the hours with the highest AC use, at the feeder level it is necessary to 
distinguish a 175 kW  (35% x 500 kW) change in electricity use from over 11,000 kW of feeder 
load.  Because the change is relatively small, 1.5%, it is difficult to detect it and confidently 
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eliminate alternative explanations, including random variation.  In contrast, with household data 
of participants, the change is easier to observe and detect because it contains less noise.  
Assuming a 35% reduction in AC electricity use, it is necessary to distinguish 175 kW from 
approximately 900 kW, a far easier task.  However, this is a best case scenario because the AC 
load is a smaller share of household load in most hours and days, which are typically cooler.  
Clearly, it is easiest to detect changes in AC electricity use when it is directly measured.  
  
In practice, it is possible to increase penetration feeders so the electricity reductions are a larger 
share of the feeder load and can be observed.  Employing more aggressive load control strategies 
such as 100% cycling or load shed also leads to larger reductions that are more easily detected.  
Both PG&E and SCE tested the ability to increase feeder penetration level and observe impacts 
with feeders versus with AC cycling.  In both cases, the feeders were atypical in the degree of 
AC control saturation and the feeders selected.  Even for highly saturated feeders, the results are 
mixed and depend on the date and time of operations.   
 
Figure I-2 compares impacts on feeder loads to impacts when AC units are directly measured.  It 
illustrates why impacts are more difficult to detect with feeder data, even in feeders with 
extremely high saturation of AC control.  The example is from the PG&E 2009 Ancillary 
Services Pilot where 4 feeders were highly saturated and 2,000 AC compressors on 4 feeders 
were instructed to fully shut down 70 times for 15 minutes.  The graph presents two different 
days, August 20th and September 8th, 2009, for the same feeders and AC units.  A few 
observations are noteworthy.  First, the reduction in AC load is easy to detect visually in both 
days, while it is more difficult to observe the impact using feeder data for September 8th.  
Second, although the impacts for August 20th are clearly visible of the feeder data, this is in part 
a product of the graph scale, which shows the feeder load above 20 MW, and the time resolution, 
which focuses on a single hour.  Without the adjusted scales, the impacts on the feeder electricity 
load are less evident.  Third, in both days, the impacts would be half or less if a 50% cycling 
strategy had been employed instead. 
 
During the August 20th event window, the aggregate reduction in electricity use was 2.2 MW 
and the aggregated feeder electricity loads were 26 MW.  The AC control produced a 8.5% 
reduction in feeder electricity loads.  In contrast, the same reduction amounted to 76% of AC 
electricity use.  For September 8th, the aggregate reduction in electricity use was 0.7 MW and 
the feeder loads were roughly 17 MW.  The percent change in feeder electricity loads is smaller, 
4.1%, and much harder to detect.  In fact, a reader that was not informed of the event window 
could easily conclude the event occurred earlier, between 1:30 and 1:45 PM. 
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Figure I-2: Comparisons of Direct Load Control Impacts on Feeders and Air Conditioner Load 
August 20th, 2009 September 8th, 2009 
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While it is possible to observe AC impacts on distribution feeder electricity data, in practice, few 
feeders will have high enough AC control penetration rates to be able to confidently and 
accurately detect changes in electricity use using that data source.  Feeder data includes load 
variation from residential and commercial accounts, accounts with and without AC and multiple 
end-uses, many of which are unrelated to air conditioning.  For most feeders, controllable AC 
load is too often too small compared to other electricity use on the feeder.  To see impacts at the 
feeder level, the right feeder at the right hour during the right temperature conditions need to be 
selected and an aggressive control strategy needs to be employed.  Even for feeders with 
extremely high AC control saturation levels, it can be hard to detect impacts using feeder data 
depending on weather conditions and hour of day.  In testing the accuracy of settlement 
alternatives, rather than hand-pick highly saturated feeders, we employed a random sample of 
feeders to better understand the feasibility of feeder data for settlement on a program-wide basis.  
 
Table I-1 summarizes the distribution circuit feeders in PG&E territory with customers enrolled 
in their AC load control program.  There are approximately 2,800 distribution circuit feeders in 
PG&E territory and nearly 2,000 had customers enrolled in the AC control program when the 
data was extracted.  The tables and the analysis exclude 66 feeders with less than 100 total 
population accounts since the results for these feeders are less reliable. 
 

Table I-1: Characteristics of PG&E Feeders with Accounts in Air Conditioner Control 

Penetration 
Deciles 

Feeders 
Central 

AC 
Saturation 

Avg. 
Residential 

Feeder 
Accounts 

Avg. 
Monthly 

kWh 

Avg. 
Number of 
Accounts 

in SmartAC 

SmartAC 
Participant 

Avg. 
Monthly 

kWh  

% 
Penetration 
of Accounts 

Top 10th 193 75.3% 1,980.7 801.5 199.7 766.4 10.0% 

2nd  193 68.9% 2,002.7 726.6 143.7 734.8 7.1% 

3rd 193 62.9% 1,795.2 713.6 102.7 746.6 5.7% 

4th 193 57.8% 1,502.5 686.5 63.5 749.1 4.2% 

5th  194 52.7% 1,640.9 693.7 47.6 748.2 2.9% 

6th  193 49.2% 1,804.6 691.1 36.6 735.1 2.0% 

7th  192 40.3% 1,821.9 618.1 24.9 663.5 1.4% 

8th  194 31.7% 1,892.9 570.6 15.1 644.9 0.8% 

9th  193 22.7% 1,700.9 537.1 6.0 650.7 0.3% 

Bottom 10th 194 11.0% 2,570.1 462.1 1.8 576.6 0.1% 

TOTAL 1932 47.2% 1,871.5 650.0 64.1 707.2 3.5% 

 
In Table I-1, the top 10% of feeders with the highest penetration are grouped together, followed 
by the next 10% and so on.  For each decile, the demographics of the average feeder are shown, 
including the total number of accounts, estimated central AC saturation and number of AC 
devices enrolled in the program.  Not surprisingly, the AC control feeder penetration is higher 
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when central AC saturation is higher.  However, as the example of the San Ramon feeder 
demonstrated, even when over 10% of the accounts on a feeder are enrolled, the impacts of 
curtailment operations are a relatively small share of the feeder loads in extremely hot days and 
make up an even smaller share of the feeder loads in cooler days.  
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