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Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor The Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
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1. Executive Summary 
 
This report presents a new simulation tool under development at Lawrence Berkeley 
National Laboratory (LBNL). This tool uses EnergyPlus to simulate each single-family 
home in the Residential Energy Consumption Survey (RECS), and generates a calibrated, 
nationally representative set of simulated homes whose energy use is statistically 
indistinguishable from the energy use of the single-family homes in the RECS sample. 
This research builds upon earlier work by Ritchard et al. for the Gas Research Institute 
and Huang et al. for LBNL. A representative national sample allows us to evaluate the 
variance in energy use between individual homes, regions, or other subsamples; using 
this tool, we can also evaluate how that variance affects the impacts of potential policies. 
 
The RECS contains information regarding the construction and location of each sampled 
home, as well as its appliances and other energy-using equipment. We combined this data 
with the home simulation prototypes developed by Huang et al. to simulate homes that 
match the RECS sample wherever possible. Where data was not available, we used 
distributions, calibrated using the RECS energy use data. Each home was assigned a best-
fit location for the purposes of weather and some construction characteristics.  
 
RECS provides some detail on the type and age of heating, ventilation, and air-
conditioning (HVAC) equipment in each home; we developed EnergyPlus models 
capable of reproducing the variety of technologies and efficiencies represented in the 
national sample. This includes electric, gas, and oil furnaces, central and window air 
conditioners, central heat pumps, and baseboard heaters. We also developed a model of 
duct system performance, based on in-home measurements, and integrated this with fan 
performance to capture the energy use of single- and variable-speed furnace fans, as well 
as the interaction of duct and fan performance with the efficiency of heating and cooling 
equipment. Comparison with RECS revealed that EnergyPlus did not capture the heating-
side behavior of heat pumps particularly accurately, and that our simple oil furnace and 
boiler models needed significant recalibration to fit with RECS. 
 
Simulating the full RECS sample on a single computer would take many hours, so we 
used the “cloud computing” services provided by Amazon.com to simulate dozens of 
homes at once. This enabled us to simulate the full RECS sample, including multiple 
versions of each home to evaluate the impact of marginal changes, in less than 3 hours. 
 
Once the tool was calibrated, we were able to address several policy questions. We made 
a simple measurement of the heat replacement effect and showed that the net effect of 
heat replacement on primary energy use is likely to be less than 5%, relative to appliance-
only measures of energy savings. Fuel switching could be significant, however. We also 
evaluated the national and regional impacts of a variety of “overnight” changes in 
building characteristics or occupant behavior, including lighting, home insulation and 
sealing, HVAC system efficiency, and thermostat settings. For example, our model 
shows that the combination of increased home insulation and better sealed building shells 
could reduce residential natural gas use by 34.5% and electricity use by 6.5%, and a 1 
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degree rise in summer thermostat settings could save 2.1% of home electricity use. These 
results vary by region, and we present results for each U.S. Census division. 
 
We conclude by offering proposals for future work to improve the tool. Some proposed 
future work includes: comparing the simulated energy use data with the monthly RECS 
bill data; better capturing the variation in behavior between households, especially as it 
relates to occupancy and schedules; improving the characterization of recent construction 
and its regional variation; and extending the general framework of this simulation tool to 
capture multifamily housing units, such as apartment buildings. 
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2. Introduction 
 
 American homes were responsible for using 21.5 quadrillion British thermal units 
(Btus) of primary energy in 20081. This energy was primarily used for home heating and 
cooling, but water heating, lighting, appliances, and home electronics also create 
significant energy demand. Home energy efficiency projects, including such structural 
changes as increased insulation or a tighter building envelope, and improvements in 
appliance efficiency, such as more efficient heating, ventilation, and air conditioning 
(HVAC) systems or refrigerators, can save households significant amounts of energy and 
commonly have reasonable payback periods.  

Individual homeowners can evaluate the efficiency of their homes through energy 
audits and direct their resources toward the most effective changes for their homes. On a 
national level, however, there is a need for tools that policymakers can use to evaluate the 
impacts of different efficiency measures on national energy consumption that take 
regional weather and housing stock variation into account. For example, it would be 
difficult to evaluate the energy savings from increased attic insulation, more efficient 
windows, or improved air conditioner efficiency on both a national and regional level 
using only aggregate inputs.  

This report describes the development of a building energy simulation tool that 
constructs a nationally representative sample of single-family home prototypes, while 
capturing the variability of American housing stock, weather, and behavior. Properly 
calibrated, such a tool allows direct analysis of policy options, such as appliance 
standards (especially standards for HVAC equipment) and home retrofit programs that 
focus on the building envelope, and allows comparison of national and regional impacts. 
In addition, the tool could be used to assess the impact of the “heat replacement effect,” 
in which the heat from lighting and appliances helps to heat the home in the winter and 
increases the load on air conditioning in the summer. 
 The simulation tool described here traces its origins to work conducted by 
researchers at Lawrence Berkeley National Laboratory (LBNL) during the 1980s and 
1990s, partly on behalf of the Gas Research Institute (GRI). Ritchard et al. published the 
first report for the GRI using these simulated home prototypes in 19922, and Huang et al. 
continued this research in a series of papers and reports3,4,5. By simulating prototypical 
homes (using DOE-2, a building energy analysis program) with variations in a single 
component, Huang et al. were able to estimate the impact on building gas and electricity 
consumption of different components within the home, such as windows, walls, roof, 
floor, and appliances, and also occupants. They conducted these simulations using a set 
of five home designs modeled in each of 16 cities with their corresponding weather. They 
based the home designs on data collected for the 1980, 1981, and 1982 Residential 
Energy Consumption Survey (RECS), which is conducted by the Energy Information 
Administration (EIA), a part of the U.S. Department of Energy (DOE). In order to 
generate national estimates of the building loads and energy consumption, they used the 
weighting provided by RECS to estimate the number of households similar to each 
prototype and then scaled the results of that prototype. These results provided valuable 
insights into the impact of efficiency measures undertaken to address each of the building 
loads, but provided little insight into the range of variability of these impacts, and the 
results were not calibrated to the RECS total energy use. 
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 In this report, we describe work conducted at LBNL to update the prototype tools 
developed by Huang et al. to address these points and build a policy analysis tool that can 
evaluate the regional and national impacts of different policy options. The development 
of this tool began by updating the generalized prototypes developed by Huang et al. to be 
simulated using EnergyPlus*, a successor to DOE-2. The generalized prototype consists 
of a square home with either one or two stories. It may have one of three foundation types 
(slab, crawlspace, or basement), and has one fourth of its windows and doors on each 
wall. We updated the description of HVAC systems to include performance data for air 
conditioners with seasonal energy efficiency ratio (SEER) ratings between 7 and 12 and a 
variety of heating systems including: gas, oil, or electric furnaces; heat pumps; electric 
baseboards; or boilers with baseboard heaters or radiators. Each home has occupants, a 
refrigerator, lights, miscellaneous electric or gas equipment, or both, and either an electric 
or gas water heater. 
 Our strategy was to use the 2005 RECS, the most recently published one, to 
develop a prototype home that corresponds to each single-family residence in the national 
survey and to simulate that home in EnergyPlus. The 2005 RECS collected data from 
4,382 households across the country, including 3,418 single-family homes (detached, 
attached, or manufactured). We have not updated the generalized prototypes that previous 
researchers developed for multifamily buildings; we leave that for future work.  
 As described on the RECS web site6, the survey “provides information on the use 
of energy in residential housing units in the United States. This information includes: the 
physical characteristics of the housing units, the appliances utilized including space 
heating and cooling equipment, demographic characteristics of the household, the types 
of fuels used, and other information that relates to energy use.” RECS also collects 
energy use data for the sampled households directly from their utility providers 
(including, for example, monthly electricity and natural gas bills). EIA uses these data, 
along with U.S. Census demographic data, to develop weights for each household in the 
RECS sample, indicating that each household stands in for a particular number of other 
households. With approximately 100 million households in the country, each of the 
approximately 4,000 households stands in for about 25,000 others. The households are 
grouped by census division and large state (California, Texas, New York, and Florida), 
and the weighted aggregate energy consumption of households in each area is intended to 
equal the residential energy demand for that area for all fuels. 
 The representative nature of the RECS, when combined with the information it 
collects on the details of home construction, makes it an excellent source on which to 
base home energy simulations. However, RECS does not provide enough detail to 
precisely estimate the usage of miscellaneous electric and gas appliances, or even to 
precisely determine the efficiency of home heating and cooling systems. We therefore 
developed a set of probability distributions that characterize the range of possible values 
for these simulation inputs. This variability within the simulations of a single sampled 
home prevents us from recreating a high degree of correlation between the RECS 
measured energy use and our simulated estimate. However, it does allow us to capture a 
degree of variability within the national housing stock and weather conditions that would 
be missing if we assigned only a single value to each house. Section 3 describes in further 

                                                 
* A full explanation of EnergyPlus can be found at http://apps1.eere.energy.gov/buildings/energyplus/. 
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detail the process we used to map data collected by RECS to the input parameters for 
simulated homes. 
 One of the reasons why development of this improved simulation tool is possible 
now, while it was impractical at the time that Huang et al. developed their prototypes, is 
the dramatic increase in computing power available at reasonable prices. Section 4 of this 
report describes in detail the process we developed to run EnergyPlus simulations on the 
Elastic Compute Cloud (EC2) service from Amazon.com†. Using this “cloud computing” 
platform, we were able to simulate the 3,418 single-family homes in each sample in less 
than two hours. 

Section 5 describes the statistical techniques we used to compare the energy use 
of houses surveyed in the RECS with the energy use of the simulated housing sample. 
We also discuss how we calibrated the miscellaneous loads in the simulations to better 
match RECS. This section concludes by showing the results of national simulations as 
well as simulation of subsets of the national sample (such as homes in particular climate 
zones or homes of different sizes). 

Once we have shown that the simulation tool can produce samples almost 
indistinguishable from the RECS sample, we are prepared to address some of the research 
questions posed at the start of this report. Section 6 describes initial attempts to measure 
the heat replacement effect for lighting and refrigerators and discusses ways in which the 
simulations need to be improved in order to increase confidence in these results. Section 
7 discusses the impacts of hypothetical policies, imagining a scenario in which overnight 
changes increased the efficiency of appliances or increased home insulation. The report 
concludes with a summary and discussion of ways in which this simulation tool can be 
further improved in order to better address policy questions. 

 
3. Building Prototypes from RECS 
 

This section describes the process of building a simulated home for use in 
EnergyPlus from the data collected by the RECS and other data resources.  

 
3.1 Construction Characteristics 

 
The simulated prototype homes inherit several basic construction characteristics 

directly from their RECS household equivalents. These are the home size, the number of 
floors (one or two only), single- or double-pane windows, and the type of foundation 
(slab, crawlspace, or basement). 

Our EnergyPlus prototypes have either one or two floors. While homes in RECS 
may have more than two floors, we model homes with three or more floors as two-story 
homes. (If we were modeling multifamily housing, such as apartment buildings, such an 
approximation would be less justifiable. However, only 5% of single-family RECS 
households have more than two stories.) Our prototypes, inherited and updated from 
Huang et al.’s earlier work in DOE-2, can model crawlspaces, basements, or concrete 
slabs. Most homes in RECS specify one of these three forms of foundation. We model 
the few RECS homes that do not specify a foundation type as having a crawlspace, thus 

                                                 
† http://aws.amazon.com/ec2 
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representing the effect on HVAC loads as intermediate between that of a slab and a full 
basement, making this the unbiased choice. 

RECS does not contain information regarding the orientation or aspect ratio of 
each house. We model each house as square, with each side equal to the square root of 
the area of a single floor of the RECS house. RECS provides several measures of a 
home’s size, including the heated space, the cooled space, and the space including 
garages or carports. We use the measure RECS calls the “total home square footage”. The 
lack of orientation information also prevents us from allocating doors and windows to the 
four sides of the square in anything other than an equal distribution. As a result, each side 
of the house has the same window area, and a single 3-foot door is distributed across the 
four sides.‡ 

RECS provides limited, but useful, information regarding the number of windows 
and their construction. For each household, RECS provides an estimate (in bins) of the 
number of windows in the house, and it also provides important information regarding 
the construction of the windows, including the frame material (we simulate either wood 
or aluminum, depending on the RECS response) and the number of panes and “low-e” 
properties. We simulate only single- or double-pane windows of simple glass. RECS 
homes with low-e or triple-pane windows are simulated as double-pane (these homes 
constitute roughly 10% of the single-family homes in RECS). We estimate the window 
area by assuming that each window in the house has an area of approximately 15 square 
feet, and apply a broad Gaussian distribution to the average window size in each home. 
 
3.2 Occupancy and Loads 
 
 Our EnergyPlus simulations use a collection of standard schedules, based on those 
used by RESNET, for heating and cooling loads. We do not vary these schedules between 
homes, and do not vary them by date or season. We calculate several loads using 
schedules: occupancy, lighting, miscellaneous electrical and gas use, and hot water 
demand. The magnitude of each of these loads is informed by RECS, but not fixed by it 
(except in the case of occupancy, where the maximum number of occupants is set to the 
reported home occupancy). 

Lighting and miscellaneous electrical use are stochastically generated for each 
simulation run, and the parameters of the random distribution from which they are drawn 
are used as calibration variables to match the aggregate simulated results for total home 
energy use to the data for actual homes provided by RECS. This calibration process is 
described in more detail later. 

Miscellaneous gas use is assigned in homes that report using natural gas (or other 
fossil fuels) for food preparation or heating. This load has a significant latent portion to 
reflect the humidity introduced into the home by cooking. The magnitude of this load is 
used as a calibration variable to better align RECS-reported and simulated gas use. This 
load uses the same hourly schedule as the miscellaneous electrical load. 

Hot water demand is stochastic, but the parameters of the distribution are 
determined by the number of occupants (based on the RECS survey response) and by 
analysis of the shape of the estimated distribution for water-heating end-use energy 
derived by RECS. This analysis of RECS shows that a Weibull distribution with a shape 
                                                 
‡ We follow Huang et al.’s EnergyPlus model as our template, and it models only a single door. 
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parameter of approximately 2 is capable of characterizing the hot water energy use. We 
adjust the scale of the Weibull curve to calibrate the simulation results with the RECS 
total energy bill results for homes that use gas for hot water but not for space heating 
(which allows us to isolate this end use). We do not use the hot water energy use 
calculated by RECS itself because this energy use does not allow us to capture variability 
(beyond the sample variability in the RECS sample). 

Each simulated home contains one refrigerator, and all modeled refrigerators are 
the same. RECS provides much greater detail regarding refrigerators (including size, age, 
and number), but for simplicity we have chosen to simulate each home with the same 
single refrigerator. This refrigerator is modeled as a “Refrigeration:Case” plus a 
“Refrigeration:CompressorRack”, allowing the appliance’s energy consumption to vary 
with the ambient indoor conditions. (These EnergyPlus components are intended for use 
to model larger refrigeration systems of the sort found in grocery or convenience stores, 
but they can be adapted to simulate a home-scale appliance.) This appliance uses 
approximately 600 kWh per year under typical indoor conditions, but individual 
appliances may use as little as 300 kWh/year or as much as 1,200 kWh/year in cooler or 
warmer homes. It is modeled without a restocking or defrost schedule, so the energy use 
is only that due to heat penetration of the case. 
 
3.3 Simulating Realistic HVAC Systems 
 
 RECS reports the primary home heating and cooling equipment present in each 
home; our simulations attempt to reproduce this equipment. On the heating side, we 
simulate electric, gas, or oil furnaces; heat pumps; electric baseboard heaters; and boilers 
with hot water baseboard heaters. On the cooling side, we simulate central air 
conditioners, heat pumps, and window air conditioners. We also developed models for 
the flow and static pressure in duct systems for homes with forced-air systems and 
applied this model to adjust the airflow through heating and cooling coils, as well as to 
adjust the energy required by HVAC fans. 
 

3.3.1 Central Air Conditioners and Heat Pumps 
 
 EnergyPlus models direct expansion (DX) coils for air conditioners and heat 
pumps. The critical inputs required for these models are: the rated cooling (or heating) 
capacity, rated sensible heat ratio, rated airflow, rated coefficient of performance (COP), 
and a set of fixed performance curves. The performance curves modify the rated 
performance for a system not operating under the rated conditions. Two curves modify 
the cooling capacity as a function of the indoor and outdoor temperature (using a 
biquadratic functional form) and as a function of the air flow fraction (quadratic). Two 
curves modify the energy input ratio (the inverse of the COP) with respect to the 
temperatures and flow fraction. These four performance curves may vary significantly 
between air conditioner and heat pump models. A fifth curve accounts for compressor 
cycling during a simulation time step when the load does not require the compressor to 
run all the time. We use the EnergyPlus recommended default form for this part load 
fraction correlation curve:  
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part load fraction = 0.85 + 0.15part load ratio, 
 
 where “part load ratio” is the fraction of time the compressor runs during the time step. 
 
 We assigned SEER values to the air conditioners installed in the simulated homes 
based on the average SEER values for the era in which the appliance was built. For 
example, for air conditioners built between 1996 and 2000, the average SEER is 
approximately 10.7.7 Homes with such air conditioners have the most chance of having 
SEER 11 systems, with a significant probability of having SEER 10 systems instead. A 
smaller fraction has SEER 9 or 12 air conditioners. The proportions of each efficiency 
level are balanced so that the average value is 10.7. 
 We used published performance data for commercially available residential air 
conditioners and heat pumps to determine the rated COP and the four curves that modify 
the capacity and energy input ratio (EIR) as functions of temperature and flow fraction. 
Published performance data include the capacity and EIR at a range of operating 
conditions, and we fit quadratic and bi-quadratic curves to this data. In particular, for 
SEER 10, 11, 12, and 13 air conditioners, we fit functions to the performance data for 3-
ton Carrier units. We used the performance curves derived for the SEER 10 system for 
SEER 7, 8, and 9 systems. Table 3.1 describes the air conditioning products used to 
derive the performance curves at the various SEER levels.  
 
Table 3.1. Air Conditioning Products Used to Derive Performance Curves 
SEER Outdoor Section Model Indoor Section Model 
10 38TKB036 CD5AA036 
11 38TMA036-30 CC5A/CD5AA036 
12 38TR036 38TR036 
13 25HPA336A30 FY4ANF042 
 
 Heat pumps require similar performance curves, for both heating and cooling 
performance. Table 3.2 describes the heat pump products used. It is possible to design 
systems with various heating seasonal performance factor (HSPF) ratings for a given 
SEER, and vice versa. However, we used the following equation to link these two 
characteristics: HSPF = 3.2 + 0.4SEER. 
 
Table 3.2. Heat Pump Products Used to Derive Performance Curves 
SEER HSPF Outdoor Section 

Model 
Indoor Section 
Model 

10 7.2 38YKB036-
30,50,60 

FB(4,5)AM(A,F)036

11 7.4 38YMA036-30 FB4AN-042 
12 8.0 38YR036-31 FB4AN042 
 

 
To assess the energy savings from advanced, multi-speed air conditioning and 

heat pump systems (see Section 6), we used the performance data of a SEER 16 cooling 
system and an HSPF 10 heating system. On the cooling side, we based our performance 
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curves on a 25HNA636A30 outdoor section combined with an FE4AWB006 indoor 
section. For the heating performance of a multi-speed heat pump, we used a 
25HNA948A30 outdoor section with an FE5ANB006 indoor section. 

 
3.3.2 Window Air Conditioners 

 
 We modeled only a single type of window air conditioner, which we modeled as a 
SEER 10 system with a COP of 3.0, and with the same performance curves as the SEER 
10 central air conditioner system described above. We modeled each unit as having one 
ton of cooling capacity,§ and fixed the number of units based on the answer to this 
question from RECS.8 For homes with two floors, we divided the units evenly between 
the two floors. 
 

3.3.3 Furnaces 
 
 Central heating systems, including electric, gas, and oil furnaces, were modeled 
using the Coil:Heating:Electric and Coil:Heating:Gas inputs to EnergyPlus (with oil 
furnaces modeled as gas furnaces with different efficiencies). Electric resistance heaters 
were modeled as having an efficiency of 100%, while gas and oil furnaces have lower 
efficiencies. We used the reported age of these heating systems, along with data collected 
for furnace efficiency analysis9 to determine an efficiency distribution for each age of 
furnace. For example, gas furnaces between 10 and 19 years old have an 18% chance of 
being 60% efficient, a 13% chance of being 70% efficient, an 11% chance of being 75% 
efficient, a 39% chance of being 80% efficient, an 11% chance of being 90% efficient, 
and an 8% chance of being 92% efficient10. In each simulation, the selected home might 
have any one of these appliances. 
 When comparing our simulation results with the reported fuel consumption from 
RECS, we noticed that simulated homes with oil furnaces modeled in this way used 
significantly less fuel than the RECS homes they attempted to model. We attribute this 
discrepancy to two factors: First, we are modeling the oil furnaces as gas furnaces, with 
no standby or idle losses. Second, fuel oil is generally not purchased through a utility, so 
the oil use for these homes reported by RECS is subject to greater uncertainty. (RECS 
does attempt to procure the actual bills for these homes.) We corrected for this 
discrepancy by inserting an efficiency factor of 0.67 for oil furnaces. We have no 
physical or simulated model to explain this factor, only that it is necessary in order to 
capture these homes’ reported energy use. 
 RECS allows respondents to report if they do not heat some fraction of their 
home. If the heated fraction fell below 60% for two story houses, we modeled the home 
as though the second floor were unheated. 
 

3.3.4 Baseboard and Radiator Heating 
 

                                                 
§ The room air conditioner product class that has the greatest market share has a cooling capacity of 
between 8,000 Btu/h and 13,999 Btu/h.  One-ton capacity units (12, 000 Btu/h) fall within this class. 
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 We modeled electric baseboard heating using the 
“ZoneHVAC:Baseboard:Convective:Electric” EnergyPlus model. Rather than allow such 
systems to be autosized, we modeled them as having 1,000W of heating capacity for 
every 750 square feet of heated space in the home. We determined this capacity factor by 
comparing the electricity use of simulated homes with baseboard heaters to those same 
homes in RECS and adjusting the capacity to achieve the best match in the energy use 
distribution.  
 For RECS homes that reported the use of gas or oil for heat, but no central 
furnace system, we modeled gas and oil-fueled boilers connected to hot water baseboard 
systems. We estimated the boiler efficiency in the same way we did for oil furnaces, 
using historical shipped boiler efficiencies in combination with a calibration factor of 
0.65. This efficiency calibration factor, as in the case of oil furnaces, may reflect home 
construction characteristics correlated with the use of these heating systems, or it may 
reflect the imperfect nature of our EnergyPlus model of a boiler and baseboard system 
(such as not fully characterizing the additional losses in such a system). Butcher et al.11 
studied the full-year input-output efficiency of boiler systems and measured a similar 
factor for their baseline system, with inefficiency largely resulting from high idle losses 
(which are not captured in our simplistic model). 
 

3.3.5 System Sizing and Accounting for Ducts 
 

EnergyPlus has “autosizing” features that adapt systems specified by the user in 
general terms to the specific case of an individual home. For example, the user can leave 
the capacity of an air conditioning system to be autosized, and EnergyPlus will determine 
the capacity necessary to meet the sizing conditions described by the user. In our case, we 
used the 99% and 1% extreme cases from the TMY3 weather files. That is, these 
conditions describe the 99th and 1st percentiles of the temperature experienced in the 
location. The 99th percentile characterized an extreme summer day, and the 1st an extreme 
winter day. EnergyPlus determines the capacity necessary to meet this heating or cooling 
load, and assigns that capacity to the system (after applying a multiplicative sizing factor; 
1.25 in our analysis). For this research, we began by autosizing the rated capacity, rated 
airflow, and rated sensible heat ratio (where appropriate) for the heating and cooling of 
each home. The SEER and HSPF of the home’s air conditioning or heat pump system 
determined the COP and performance curves. 

This capacity-sizing system provides a close approximation of the capacity of the 
physical system that would be installed in this home. However, EnergyPlus is able to 
assign capacities that do not reflect the restricted nature of system availability in the 
marketplace. For example, EnergyPlus could determine that a home should have a 3.22-
ton air conditioning system. However, air conditioning systems generally only come in 3- 
or 3.5-ton sizes, not 3.22-ton. We applied a method that allows a calculation to intercede 
between the sizing stage and the full annual simulation to address this. The program 
calculates the capacity of the heating and cooling systems designed by EnergyPlus in the 
appropriate units (tons of cooling for air conditioners, kBTU/hour for heaters) and adjusts 
the systems to have the smallest capacity available on the market that exceeds the 
capacity designated by EnergyPlus. Our 3.22-ton air conditioner household is therefore 
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assigned a 3.5-ton system. This correction allows us to better capture the real part-load 
behavior experienced by the installed systems. 

EnergyPlus can autosize the airflow for heating and cooling systems (as well as 
the sensible heat ratio for air conditioning coils). This airflow autosizing targets 400 
cubic feet per minute (cfm) for each ton of cooling or heating capacity. While the 
autosizing algorithm will not fix the flow at exactly 400 cfm/ton, the systems as sized by 
EnergyPlus are much closer to this ideal than installed HVAC systems in U.S. homes.  

We collected data regarding airflow in home installations from Proctor 
Engineering12, as well as from the Florida Solar Energy Center13, Ecotope14, Chitwood15, 
and the Energy Center of Wisconsin16. Together, these sources provided data on 669 
homes in 10 states. For each home, the data include the capacity of the air conditioning 
system and the measured maximum airflow, as well as the static pressure measured in the 
system under these conditions. The capacity and flow data allow us to calculate the 
cfm/ton in these real homes, and examine the distribution of this parameter. Figure 3.1 
shows the distributions of cfm/ton for different installed system capacities. We fit 
Gaussian distributions to each of these measured distributions. Then, for each RECS 
home to be simulated, we drew a sample from the distribution corresponding to the 
home’s air conditioning capacity to determine how that simulation’s airflow would 
compare with the average of 400 cfm/ton in the maximum cooling mode.**  

                                                 
** EnergyPlus issues error warnings if the airflow falls outside of the range of 200 to 500 cfm/ton, so we 
limited the distribution by these values for all homes. Heat pump simulations showed some instability if the 
airflow varied outside of 300 to 450 cfm/ton, so we set these as the limits for heat pumps.  
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a) 

 

b) c) 

d) 

 

e) f) 

Figure 3.1.  Maximum airflow as a fraction of 400 cfm/ton of cooling capacity for a) all 669 measured homes, and for subsets with 
different cooling capacities: b) 2 tons, c) 2.5 tons, d) 3 tons, e) 3.5 tons, and f) 4, 4.5, and 5 tons. Each plot shows the histogram of 
measured homes along with the Gaussian best fit to that distribution.
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In order to characterize the energy consumption of the furnace fan, which is used 

to distribute the air for heating and cooling, we needed to determine the static pressure 
faced by that fan at each operating point. Generally, the airflow during heating operation 
is less than during cooling, resulting in different static pressure and different fan energy 
consumption. Based on product literature information we assumed that the airflow during 
heating operation was 80% of the flow during cooling, except in houses with significantly 
larger heating systems than cooling systems, where the airflow system design would be 
driven by the heating system’s requirements. (If the heating capacity was between two to 
three times greater than the cooling capacity, then the airflow was the same for both 
heating and cooling; if the difference was even greater, then the heating-mode air flow 
was also greater.)  

For each home, we needed to calculate a system curve that characterizes the 
home’s HVAC system ductwork by relating the static pressure to the airflow. This curve 
usually has a roughly quadratic shape, and we assumed that it fits this form:  

 
Static pressure = SCC  flow2, 

 
where SCC is a parameter we called the home’s duct system curve coefficient.  
 The HVAC dataset we collected allowed us to calculate the system curve 
coefficient of each of the 669 homes by relating the measured static pressures to 
maximum airflows. Some homes reported only the static pressure without the coils; for 
these homes we assumed that the coils added 0.3 inches of water, or approximately 75 
Pascals, to the external static pressure. The data exhibit a large degree of scatter, but a 
plot of the SCC vs. maximum home airflow shows a definite trend (see Figure 3.2a). We 
smoothed the data by calculating the average SCC for homes with maximum airflow 
(MaxFlow) in each of 84 bins and fit a power law curve to this smoothed data (see Figure 
2.2b). The best-fit power law function is: 
 
 SCC = 222.85  MaxFlow-1.6117. 
  
 
a) b) 

 
Figure 3.2. a) System curve coefficients of measured home HVAC systems as a function 
of maximum airflow. B) Smoothed system curve coefficient data as a function of 
maximum airflow, with the power law fit illustrated. 
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With a reference fit in hand to relate maximum flow to the SCC, we examined the 
residuals when this curve is compared with the SCCs of our 669 home dataset. We 
characterized the residuals as a multiplicative factor, rather than a shift. That is, if the 
average curve predicted a SCC of 300, but the home had an SCC of 600, the residual was 
a factor of 2. Examining the distribution of residuals, we fit the distribution with a 
Weibull distribution characterized by a scale of 1.10 and a shape of 3.04. 

With an average function and a residual distribution, we were then able to address 
the SCC, and thus the static pressure, of homes in our RECS sample. For each home, we 
first calculated the system capacity by rounding up the capacity determined by 
autosizing. Then, we used the Gaussian distribution for that capacity to select a maximum 
airflow (on average less than 400 cfm/ton). Using that maximum airflow, we calculated 
the average SCC, and then drew a system curve factor from the Weibull distribution to 
get the SCC that determined the system curve for the home. This system curve enters the 
EnergyPlus simulation in the form of the static pressure faced by the furnace fan at 
maximum flow. 
 

3.3.6 Characterizing Fan Energy Consumption at Different Airflows and 
Pressures 
 

Accurately characterizing HVAC energy consumption requires a model of fan 
energy consumption that goes beyond simply applying the standard fan laws. We 
modeled the prototypes that have central heating or cooling systems as containing 
permanent-split capacitor (PSC) motors. We used data on typical PSC fan motor 
performance that was collected and used for the 2007 DOE efficiency standards analysis 
for furnaces9. That analysis collected data regarding the performance of hundreds of 
existing furnace fans and developed an average model that characterized the performance 
of typical fans. We extended that model by fitting the typical data to a single bi-quadratic 
function that calculates fan energy use as a function of airflow and static pressure. 

In order to model more efficient HVAC systems (see Section 7), we also needed 
to develop similar models for electronically commutated motors (ECMs) under two 
different control strategies: a “constant volume” strategy and a “constant torque” strategy. 
For constant volume, we used ECM data collected and averaged for the 2007 DOE 
analysis, and undertook the same fitting process. Constant torque controls have been 
developed more recently, and we used performance data from the ECO-TECH furnace 
fan by Emerson17 as our starting point for the fitting process. 

Having developed functions that calculate fan energy as a function of airflow and 
static pressure, we were able to provide the fan performance curves to EnergyPlus that 
reproduce the fan energy use not only at the maximum flow condition (usually the 
maximum cooling mode), but also at the other flow conditions. 
 
3.4 Assigning Location to a RECS Household 
 

To simulate each RECS household, we had to match each household with one 
location from each of two different sets of locations: the weather file location and the 
typical building construction location. We developed a set of 272 EnergyPlus weather 
files, based on the set of locations for which typical heating and cooling degree day data 
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were available from the National Oceanic and Atmospheric Administration (NOAA)18 
and standard weather files were available from EnergyPlus. Of these 272, households 
were matched to 218 locations††. Huang et al. developed a collection of typical building 
construction data that they used for their building prototypes in each of 16 locations for 
each of 4 periods of construction. This data included typical home size, number of floors, 
wall material, window type, and the level of insulation installed on the floor, walls, and 
roof (including both original and retrofit older homes). While RECS provides household-
specific data that we used for most of these fields (such as home size), we did utilize the 
data from Huang et al. for the installed R-value of insulation. 

In assigning a location to a RECS household, we used three pieces of information 
regarding that household: the heating degree days and cooling degree days (both with a 
65 degree reference; referred to as HDD65 and CDD65) and the census division or large 
state. The goal of the matching process is to match each household with a construction 
location and weather file that most closely reflect the conditions of that household. 

With only 16 construction locations, we matched the location using a simple, 
hand-derived method. Table 3.3 lists the 16 cities, along with their HDD65, CDD65, and 
census division/large state. When only one representative city was present in the census 
division where the household was found, we used the construction data for that city. For 
example, all RECS households in census division 1 (New England) have the typical 
construction from Boston. For census divisions with two (or more) cities, we used a 
threshold value of either HDD65 or CDD65 to assign households to one city or another. 
HDD65 was used in heating climates (e.g. to distinguish between Minneapolis and 
Kansas City), while CDD65 was used in cooling climates (Kansas City vs. New Orleans 
vs. Dallas/Ft. Worth for the West South Central census division outside of Texas). None 
of Huang et al.’s cities are in the East South Central census division, so we used nearby 
cities: New Orleans, Atlanta, and Washington, DC. The thresholds were selected so that 
the weighted average HDD65 or CDD65 within each area was close to the weighted 
average HDD65 or CDD65 of the RECS households within that area (while maintaining 
the thresholds as “reasonable” numbers, such as multiples of 25). Tables in Appendix A 
list the R-values of insulation assigned for each construction location for single-family 
detached, attached, and manufactured homes. 
 
Table 3.3. Construction Locations and RECS Home Assignments 
City Census 

Division/Large 
State 

HDD65 CDD65 RECS households assigned 
to this construction location 

Boston New England 
(1) 

5841 646 All of the New England 
division 

New York City Middle Atlantic 
/ New York (2) 

5090 1002 All of the Middle Atlantic 
division 

Chicago East North 
Central 

6450 749 All of the East North Central 
division 

Minneapolis West North 
Central 

8003 634 West North Central with 
HDD65 > 7300 

                                                 
†† Most of the difference is due to a number of locations in Alaska for which weather data is available, but 
no households were matched. 
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    Pacific outside California with 
HDD65  10000 (Alaska) 

Kansas City West North 
Central 

5155 1445 West North Central with 
HDD65  7300 

    West South Central outside of 
Texas with HDD65 > 3650 

Washington, 
DC 

South Atlantic 5233 1044 South Atlantic with HDD65 > 
4225 

    East South Central with 
HDD65 > 3700 

Atlanta South Atlantic 3090 1611 South Atlantic outside Florida 
with HDD65  4225 

    East South Central with 
HDD65 between 2800 and 
3700 

Miami South Atlantic / 
Florida 

141 4127 All Florida  

    Pacific outside California with 
HDD65 < 200 (Hawaii) 

New Orleans West South 
Central 

1464 2539 West South Central outside 
Texas with HDD65 < 1325 

    East South Central with 
HDD65  2800 

Fort Worth West South 
Central / Texas 

2304 2415 All Texas 

    West South Central outside of 
Texas with HDD65 between 
1325 and 3650 

Denver Mountain 6083 567 Mountain with HDD65 > 
3900 

Albuquerque Mountain 4361 1211 Mountain with HDD65 
between 2850 and 3900 

Phoenix Mountain 1154 3815 Mountain with HDD65  
2850 

Seattle Pacific 4867 127 Pacific outside of California 
with HDD65 between 200 and 
10000 

San Francisco Pacific / 
California 

3839 69 California with CDD65 < 365 

Los Angeles Pacific / 
California 

1291 470 California with CDD65  365 

 
 
Matching 3,418 RECS households with the most appropriate weather file out of 

more than 200 options could not be done manually. Therefore, we developed a tool 
(applied in a spreadsheet) that evaluates a matching function for a household with each of 
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the weather file locations, using the HDD65, CDD65, and the census division and large 
state. This function places highest priority on matching HDD65 and CDD65 within the 
smallest geographic constraint for the household. However, it allows for the best match to 
be made with locations outside strict geographic constraints. The function we attempt to 
minimize is a product of a measure of the similarity of HDD65 and CDD65 (the sum of 
the absolute values of the differences between the weather file’s degree days and the 
household’s) and a measure of the similarity of the geographic location. The region factor 
multiplies the HDD/CDD factor by a different value depending on whether the weather 
file is from the same census division or large state (0.01 for an exact match; 0.03 for a 
match within the same division but not state), an adjacent division (0.1), or elsewhere 
(10). The smallest final product is assigned as the location. In this way, we allow 
locations that are best represented by their neighbors across state lines to use that match, 
but avoid matching southeastern households to California cities just because their 
HDD65 and CDD65 might be close. 

Both the typical construction location and weather file location provide our best 
estimates of the location of each RECS household, but each is an approximation of the 
conditions and construction of each individual household. As a result, the simulated 
homes are more uniform than the housing stock they are meant to represent and face 
more uniform weather. 
 
3.5 Retrofits of Older Homes 
 For homes built before 1980, we allowed for the possibility that the homes have 
been retrofit with better insulation than they had when originally constructed. The retrofit 
values of insulation are shown in the tables in Appendix A. We relied upon two sources 
of information to determine whether a particular home in RECS had been retrofit. First, if 
survey respondents reported that their homes were “well insulated,” we took them at their 
word and modeled these homes as having been retrofit. (Our non-retrofit older home 
prototypes are not well insulated.) Altogether, 18.9% of our sampled households are both 
old and well insulated, and are therefore modeled as retrofit. Second, we derived a 
function relating the probability of retrofits to the sum of the heating and cooling degree 
days (HDD65 and CDD65). We used data presented by Huang et al.3, derived from a 
presentation by A.D. Little to DOE in 1998, which show the fraction of homes which 
have been retrofit in each of a number of cities. We examined the retrofit fraction as a 
function of HDD65+CDD65, adjusted for the presence of homes we had already 
identified as being well insulated from the survey results, and then calibrated on home 
size. (We discovered that the distributions of energy use by small and large houses 
needed to be taken into account, because larger houses were more likely to have been 
already retrofitted.) Taking all of these data into account, we derived the following two 
formulas for the probability of non-reported retrofits of homes. 
 
For homes built before 1950: 
 

P = 0.129 + 5.0810-5(HDD65+CDD65) + 0.00035(sq.ft. – 1500), 
 

For homes built between 1950 and 1980: 
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P = 0.312 + 3.3210-5(HDD65+CDD65) + 0.00035( sq.ft. – 1500). 
 

Applying this probability as a random function to each household results in 26.25% of 
older households being retrofit (some of which are also reported as well insulated). 
Combining the two retrofit functions, 35.8% of homes are both older homes and modeled 
as retrofit. 
 
4. Simulating Homes in “the Cloud” 
 

Simulating a single prototypical home, built using the methods described above, 
for one year using EnergyPlus takes about one minute on a 3 GHz personal computer. 
EnergyPlus does not use more than one processor core, even if more than one is present, 
so simulating a second house (in addition) can also be completed in about one minute on 
a dual-core 3GHz processor. RECS 2005 contains 3,418 single-family homes suitable for 
simulation using the tools described in this paper. On a dual-processor computer, 
simulating each of these homes once would take approximately 30 hours. If we would 
like to examine the marginal impact of a change in each house (such as increased 
insulation or a more efficient HVAC system), we need to simulate each house at least 
twice, driving the time required to about 60 hours. These time requirements make 
simulations of the full RECS sample onerous when conducted on a single computer. 

The single-thread nature of EnergyPlus simulations makes them ideal candidates 
for naïve parallelization, in which each simulation is assigned to a different processor. In 
order to make full-sample simulations fast and straightforward, more than two processor 
cores are required. For example, if we had access to 100 processor cores, we could 
simulate each house in RECS once in under an hour. To make this performance a reality 
for our work, we utilized EC2 from Amazon Web Services, which is associated with 
online retailer Amazon.com. EC2 is a service whereby Amazon can rent its unused 
computer resources to other users. (Amazon needs enough computing resources to meet 
rush periods, but this power might sit idle or off the rest of the time. EC2 allows Amazon 
to utilize these resources and earn income from them.) 

Amazon’s EC2 makes many different computer configurations (or instance types) 
available. For our building simulations, which are CPU-intensive but not memory-
intensive, we use the “High-CPU Extra Large” instance type. Each running computer is 
referred to as an instance. Each High-CPU Extra Large instance has 7 GB of RAM and 8 
virtual cores, each of which is equivalent to a 2.5 to 3 GHz desktop computer processor. 
These cores have similar EnergyPlus performance to the cores used on our local desktop 
personal computers (PCs), in that a single house takes about a minute to simulate for a 
full year. If we use 10 of these instances from Amazon EC2, we have 80 cores at our 
disposal, and the time required to simulate every house in RECS using EnergyPlus falls 
to slightly less than an hour. In practice, the overhead time cost to launch multiple 
Amazon instances, upload EnergyPlus input files, download the results, and so on, adds 
to the total time required, making EC2 an inefficient place to undertake a handful of 
simulations. For large simulation sets, such as all 3,418 RECS single-family households 
(and in particular all of RECS more than once), the overhead is small compared with 
large parallelization factors. Using EC2 makes these simulations reasonable. 



22 
 

We found Amazon EC2 to be reasonably priced. There are two ways to launch an 
EC2 instance: on-demand or through the Amazon spot market. On-demand instances 
launch within a minute or so after they are requested and stay running until we request 
that they stop. The High-CPU Extra Large instances we use for simulations cost $0.68 
per hour (or partial hour) when launched on demand. For a 10-instance run like that 
mentioned above (using 80 cores), the complete simulation run costs $6.80 (or perhaps 
$7.48 if the master instance, which runs for longer than the other instances, stretches past 
the hour mark). One user is limited to 20 on-demand instances at once without special 
permission from Amazon. 

Spot requests are bids in the spot market that Amazon runs to auction computing 
resources. When we request an instance in this market, we provide a maximum price we 
are willing to pay for that instance. If the current price is below that maximum, instances 
will launch and be assigned to us. If the market price rises above our maximum, our 
instances will be shut down immediately, with no warning. The prices in this market are 
well below the on-demand price, with High-CPU Extra Large instances typically costing 
about $0.25 per hour. One user can own up to 100 spot instances at once, making much 
larger simulations possible. For example, we have simulated each single-family house in 
RECS eight times (with eight different HVAC configurations) in a single run over the 
course of less than 5 hours using 40 spot instances. We risk losing all of our simulation 
results if the prices rise above our maximum, but we set our maximum quite high relative 
to the typical prices ($0.40 per hour) so that only system-level interruptions (of the sort 
that occur once a month or less) are likely to cause problems. 

We also take advantage of persistent storage available through Amazon’s Elastic 
Block Store (EBS). This allows us to store EnergyPlus configuration files, scripts, and 
other useful files on Amazon’s servers. The EBS volume can be mounted on an EC2 
instance like an external hard drive, and we use this connection to transfer input files and 
scripts to each EC2 instance. EBS volumes cost $0.10 per allocated GB per month. That 
is, a 100 GB volume costs $10 per month, regardless of what fraction of that 100GB we 
are using. 

Amazon also charges for data transfer, at a rate of $0.15 per GB downloaded 
(uploads are currently free). A run of 3,418 RECS households typically generates about 3 
GB of downloaded outputs, costing about $0.45 for each run. 

Appendix B gives a detailed description of the procedure we use to launch and 
run Amazon instances for EnergyPlus. 

 
 
5. Comparing and Calibrating Simulated Energy Use with RECS 
 
 RECS provides the total annual energy use, by fuel, for each of the homes in its 
sample. This data is generally collected from the responsible utilities. RECS also 
provides estimates of the breakdown of this energy by end use, calculated using a 
regression technique, sometimes called conditional demand analysis. We compared the 
reported annual energy use for RECS households with the energy use of simulated 
households. Energy use patterns, particularly the numerous miscellaneous loads (such as 
lighting, home electronics, hot water demand, and cooking), vary widely by household, 
and RECS does not survey its respondents regarding their behavior with respect to these 



23 
 

energy end uses. As a result, for our simulations we must estimate these uses, and use a 
wide distribution of possible energy demand. We cannot correlate this demand with the 
behavior of an individual household. We therefore cannot set as our goal reproducing the 
energy consumption of each household individually. Instead, we are interested in 
generating a national sample of model homes that looks as much like RECS as possible, 
when examined in aggregate, cumulative terms for the complete sample, as well as in 
subsamples. If we are successful, the simulation tool will generate a nationally 
representative sample of simulated single-family homes, with energy use statistically 
indistinguishable from the RECS sample. 
 In order to compare the energy use of a set of simulated homes with the RECS 
survey results, we need a statistical tool that can compare distributions. For this task, we 
chose the Kolmogorov-Smirnov test, or K-S test19. This test evaluates two one-
dimensional distributions by comparing them in their cumulative form. The null 
hypothesis is that the two distributions are the same; the test rejects the null hypothesis 
with some level of confidence, depending on the data themselves. The critical statistic 
(generally named D) is the maximum difference between the two cumulative 
distributions. One may use the K-S test to compare a dataset with a known or idealized 
distribution (for example, to evaluate whether a distribution is Gaussian), or it can be 
used to compare two different samples. We use the test in the latter formulation, 
comparing the energy use distributions from simulated homes with the energy use 
distribution from RECS. If the K-S test rejects the null hypothesis with greater than 95% 
confidence (QKS<0.05), we can say with that level of confidence that our simulated 
sample is different from RECS, and therefore not equivalent to a national statistically 
representative sample of home energy use. If, on the other hand, the K-S test cannot 
reject the null hypothesis with confidence greater than 95%, we can say that the energy 
use distribution generated by our simulation tool is statistically indistinguishable from the 
distribution from RECS. As we used this statistic to evaluate whether our simulations 
were capturing the complexity of the RECS data, we generally used a 99% level as the 
trigger for further examination or calibration. If the K-S test could reject the null 
hypothesis with greater than 99% confidence, then we looked at the sample in greater 
depth to determine if there was a complexity we failed to take into account. In other 
words, we chose QKS = 0.01 as our threshold. If QKS is less than 0.01, we state that the 
two distributions are statistically distinguishable, and if it is greater than 0.01 we state 
that the two distributions are not statistically distinguishable. Once the simulations had 
been calibrated, we found that only a few subsamples approached statistical 
distinguishability. 
 
5.1 Using the Cumulative Distribution Results for Calibration 
 
 RECS provides enough information to model the home heating and cooling 
systems, as well as to estimate the size of each home’s water heater. (We assumed hot 
water demand is proportional to the number of occupants and apply a Weibull probability 
distribution based roughly on RECS end-use energy estimates for variability.) We 
modeled the refrigerator in a simple fashion and assumed that each home has the same 
refrigerator. RECS does not, however, provide sufficient information to estimate the 
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usage of other electric and gas appliances (such as home electronics, cooking, and 
lighting) without taking the billing data into account.  

We used the electric and gas load from these miscellaneous uses to calibrate our 
model with RECS. To do this, we first simulated the full RECS sample without 
miscellaneous electric loads and compared the annual electricity use from these 
simulations with the annual electricity use reported by RECS. We were then able to fit 
the resulting residual using a two-stage process. First, we fit a line to the residuals as a 
function of home size, under the assumption that some miscellaneous uses (such as 
lighting) should be proportional to home size. The best-fit line to these residuals is  

 
 misc. kWh/year = 3,958 + 1.091  sq.ft. 
 
This fit leaves a significant secondary residual, which we fit as a multiplicative factor 
with a Weibull distribution (shape = 1.431, scale = 1.325). We were also able to derive a 
quadratic expression for the variation of the Weibull shape parameter with home size, up 
to a maximum of 4,000 square feet, above which the value is fixed at 0.91: 

 
 -7.3410-8sq.ft.2 + 3.610-4sq.ft. + 0.65 

 
 
 This fit is unable to capture the fact that some (about 7%) of the residuals between 
the no-miscellaneous model and RECS are negative. That is, even without the 
miscellaneous loads, the simulated energy use exceeds RECS for these homes. Once we 
implemented this residual in the simulations in the form of electric equipment and 
lighting loads, we discovered that this neglect of the negative residuals resulted in home 
energy estimates that were systematically higher than RECS. We achieved a final 
calibration to RECS by scaling these miscellaneous calibrating loads by a factor of 0.75. 
 We repeated this process to estimate miscellaneous gas loads (such as cooking or 
secondary heating) for homes that reported some fossil fuel use. In this case, there was no 
significant slope of these loads with home size, so we used a simple constant load 
(equivalent to 9.96 MMBTU/year) with a multiplicative Weibull residual (scale = 3.75, 
shape = 1.17). The residual again fit to a Weibull distribution without a negative 
component, leaving the 37% of homes with negative residuals unrepresented. (It is 
difficult to add a negative load to the simulation.) We were also able to derive a quadratic 
expression for the variation of the Weibull shape parameter for this residual distribution 
with home size, up to a maximum of 4,000 square feet, above which the value is fixed at 
0.54: 
 

-1.8010-8sq.ft.2 + 6.0710-5sq.ft. + 0.584 
 
This expression includes a scaling factor of 0.63, which achieves final calibration by 
accounting for the 37% of homes that would be best fit by negative miscellaneous loads. 
 Using the K-S test allowed us to evaluate the performance of the simulation 
model for subsets of the RECS sample, as well as for the full sample. This is particularly 
useful in evaluating the calibration of the simulation tool for non-HVAC uses. For 
example, we can examine the natural gas use in houses with electric heating and cooling. 
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For these homes, gas may be used only for water heating (in some) and for miscellaneous 
equipment. If the simulation tool reproduces the gas use distribution in this subset, we 
can have some confidence that these loads are being well captured in the full sample. 
Figure 5.1 shows the simulation and RECS fuel use results for homes that do not use fuel 
for heating. We can also evaluate the performance of our simulations of particular heating 
methods. We discovered, for example, that simulated homes with baseboard heaters and 
oil furnaces were using significantly less fuel than reported by RECS. We were able to 
recalibrate the efficiencies of these systems (both perhaps imperfectly modeled by our 
simple EnergyPlus models) in order to better match the observed fuel use distributions. 
 

Simulations
RECS

 
Figure 5.1. Cumulative distributions of fossil fuel use for all homes in the RECS sample 
that heat with electricity from simulations (blue diamonds) and from RECS (pink line). 
The Kolmogorov-Smirnov quality of this comparison is QKS = 0.501. This comparison 
was used to confirm calibration of gas water heating and miscellaneous gas use. 
  

Finally, by comparing the simulations and RECS for three subsets of houses 
divided by size (the smallest third, the middle third, and the largest third) we have been 
able to evaluate two of our assumptions. First, we evaluated whether scaling 
miscellaneous electricity use by size is correct, and it appears to be roughly correct. 
Second, we evaluated whether the results are skewed by our simple assumption that we 
can scale the original prototype designs up and down in size while maintaining a square 
house shape.  
 Although miscellaneous electricity usage scaled with house size, miscellaneous 
fuel usage does not. In particular, the residual between HVAC and water-heating only 
fuel use and the fuel use reported by RECS shows very broad variability with no 
significant variation by house size. This variability is consistent with miscellaneous gas 
use being driven by cooking and other activities that do not necessarily increase with 
house size. In some simulation runs, interestingly, the best-fit slope for a linear function 
between the residual and house size is negative. (The fit is not robust, so we chose not to 
use it for our calibration.) This indicates that the heating energy in simulations may 
increase more strongly with house size than it does in actual homes. As described above, 
we fit the fuel residual as a constant value with a Weibull-distributed multiplicative 
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factor. The Weibull distribution does show a slight variation with house size, rising as 
homes grow, and then falling. Taking into account all reasonable variation of the 
miscellaneous gas use, however, leaves the simulated fuel use slightly below the 
measured use for small homes and slightly above for large homes. The two fuel use 
distributions—for the smallest 1/3 of homes and the largest 1/3 of homes—show this 
trend, but the simulated curves are not statistically distinguishable from the RECS 
distributions (see Figure 5.9). This deviation may be a result of the simplistic model used 
for furnaces, which had no standby or idle losses; these losses would be roughly 
independent of home size. 
 
5.2 Performance of the Calibrated Model 
 
 With miscellaneous loads adjusted to calibrate the simulated homes with the 
RECS single-family home sample, we find excellent agreement between the distributions 
produced by the simulated homes and the distributions characterizing the RECS sample. 
Figures 5.2 and 5.3 show the cumulative distributions for total home electrical use and 
total home gas use from a single set of simulations, compared with the cumulative 
distribution from RECS. The quality, QKS, calculated by the Kolmogorov-Smirnov test 
exceeded 0.01 for both electricity and fuel for the samples as a whole: QKS = 0.081 for 
electricity and QKS = 0.456 for fuel. 
 

Simulations

RECS

 
Figure 5.2. Cumulative distributions of electricity use for all homes in the RECS sample 
from simulations (blue diamonds) and from RECS (pink line). The Kolmogorov-Smirnov 
quality of this comparison is QKS = 0.081, indicating that we can say with approximately 
92% certainty that the two samples are drawn from different distributions. 
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Figure 5.3. Cumulative distributions of fossil fuel use for all homes in the RECS sample 
from simulations (blue diamonds) and from RECS (pink line). The Kolmogorov-Smirnov 
quality of this comparison is QKS = 0.456, indicating that we can say with only 54% 
certainty that the two samples are drawn from different distributions. 
 

Table 5.1 lists the QKS values for each of the subsamples we examined, for both 
electricity and fuel. Four subsamples have QKS values that are less than 0.01: fuel use in 
homes built after 1990, electricity use in homes in the South Atlantic division, homes 
with heat pumps, and homes in the warmest 1/3 of climates. 
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Table 5.1. Kolmogorov-Smirnov Test Results for Comparing National and 
Subsample Simulation Results and Their RECS Equivalents 
Subsample QKS for 

Electricity 
QKS for 

Fuel 
All homes 0.0812 0.4562 
New England 0.7922 0.0256 
Middle Atlantic 0.7609 0.3557 
East North Central 0.6016 0.3357 
West North Central 0.9909 0.9523 
South Atlantic 0.0045 1.0000 
East South Central 0.4684 1.0000 
West South Central 0.2500 0.6800 
Mountain 0.9148 0.6862 
Pacific 0.0550 0.5884 
Smallest 1/3 0.6797 0.0131 
Middle 1/3 0.2048 0.9456 
Largest 1/3 0.4515 0.0701 
Warmest 1/3 Climate 0.0074 0.8157 
Middle 1/3 Climate 0.6839 0.4982 
Coldest 1/3 Climate 0.9811 0.1892 
Central AC 0.6467 -- 
Heat Pump 0.0000 -- 
Window AC 0.6573 -- 
Electric Baseboard Heat 0.3951 0.9077 
Electric Furnace 0.0340 0.1956 
Gas Furnace 0.6973 0.7322 
Heat Pump 0.0000 0.8115 
Oil Furnace 0.5044 0.3095 
Boiler/Baseboard heater 0.7338 0.0837 
1949 or before 0.0117 0.1629 
1950 to 1979 0.5235 0.4364 
1980 to 1989 0.0181 0.2046 
1990 or later 0.0152 0.0095 
 

The failure of the simulation tool in these four cases led to closer examination, 
beginning with the simulation of heat pumps. Figure 5.4 shows the cumulative 
distribution comparison between our simulations and RECS for the heat pump sample 
(280 homes). Clearly, our simulations are not accurate and significantly underestimate 
the energy use of these homes. We compared these homes with the same homes 
simulated as if they had central air conditioners and gas furnaces and determined that the 
cooling-side performance was quite similar. The performance of the simulation tool with 
air-conditioned homes led us to trust these results and focus our attention on the heating 
side of the heat pump operation. Upon examination of the EnergyPlus algorithms for the 
heating-side operation of the heat pump, we identified two shortcomings of EnergyPlus 
that we believe result in this disparity between our simulations and RECS. 
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Figure 5.4. Cumulative distributions of electricity use for homes heated and cooled with 
heat pumps from simulations (blue diamonds) and from RECS (pink line) QKS= 2.5×10-5. 
 
 Both of the EnergyPlus algorithm shortcomings that we identified for heat pumps 
relate to the use of supplemental resistance heating. The first is that EnergyPlus turns on 
the supplemental heating coils only when the compressor coils are absolutely incapable 
of meeting the heating load. As a result, it is typical for simulated homes to use their 
resistance heating element only when the outdoor temperature is at or below freezing. 
However, heat pumps in typical operation will begin using their supplemental heating 
elements when the outdoor temperature is significantly higher, between 35 and 40 
degrees. As a result, the EnergyPlus-simulated homes use their resistance heaters less 
than the equivalent real homes. Resistance heaters use much more energy than heat 
pumps, so this simulation algorithm results in the underestimating of the heat pump’s 
energy use. 

The second shortcoming is that EnergyPlus simulates the additional heating load 
due to the defrost cycle as simply another load that the compressor coils must meet. 
(During the defrost cycle, the heat pump usually runs as an air conditioner for a few 
minutes to warm its outdoor parts.) However, it is common for actual heat pumps to run 
the supplemental heating coils during the defrost cycle in order to prevent cold air from 
blowing into the home. 
 Once we had identified these shortcomings in EnergyPlus, which are outside of 
our immediate control, we focused our attention on the electricity use of only those 
homes that do not use heat pumps. Figure 5.5 shows the simulated and measured 
cumulative electricity use distribution for this set of households, where QKS = 0.459. 
Table 5.2 lists the K-S test results for subsamples excluding homes with heat pumps. 
None of the subsamples have QKS values below 0.01. Figures 5.6 through 5.9 show the 
cumulative distributions used to calculate the QKS values for electricity and fuel for 
subsamples divided by climate (Figure 5.6 and 5.8) and by home size (Figures 5.7 and 
5.9). 
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Figure 5.5. Cumulative distributions of electricity use for all non-heat pump homes in the 
RECS sample from simulations (blue diamonds) and from RECS (pink line). The 
Kolmogorov-Smirnov quality of this comparison is QKS = 0.459. 
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Table 5.2. Kolmogorov-Smirnov Test Results for Electricity Use Comparing RECS 
and Simulated Homes without Heat Pumps. 
Subsample QKS for 

Electricity 
All homes w/out heat pumps 0.4588 
New England 0.7922 
Middle Atlantic 0.7441 
East North Central 0.6614 
West North Central 0.9968 
South Atlantic 0.6358 
East South Central 0.5440 
West South Central 0.3066 
Mountain 0.8976 
Pacific 0.0310 
Smallest 1/3 0.7214 
Middle 1/3 0.3863 
Largest 1/3 0.1866 
Warmest 1/3 Climate 0.1493 
Middle 1/3 Climate 0.9563 
Coldest 1/3 Climate 0.9783 
Central AC 0.6467 
Window AC 0.6573 
Electric Baseboard Heat 0.3951 
Electric Furnace 0.0340 
Gas Furnace 0.6973 
Oil Furnace 0.5044 
Boiler/Baseboard heater 0.7338 
1949 or before 0.0148 
1950 to 1979 0.4263 
1980 to 1989 0.2805 
1990 or later 0.2681 
 
 Once we had removed heat pump households from the subsample examination, 
the only remaining subsample with a QKS value below 0.01 is the one that includes the 
fuel use of homes built in 1990 or later, which has a QKS of 0.0095. While this value is 
close to 0.01, we believe this subsample deserves further exploration. The prototypical 
insulation values used for homes built before 1990 are based on analysis of national 
survey results (primarily RECS surveys conducted in the early 1980s), conducted by 
Ritchard et al.2 and Huang et al5. However, our estimated levels of insulation for homes 
built in 1990 or later are based only on the work of Huang et al. We believe that these 
values are estimates and are not based on survey data. RECS 2005 did not survey the 
levels of insulation in homes, so we cannot turn there for more recent data. Based on our 
simulation work, we expect that surveys would show that homes built in 1990 or later 
have less insulation than Huang et al. estimated and less insulation than our simulated 
prototypes. We cannot, however, rigorously derive what the insulation values must be 
from the simulations and RECS alone.  
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 With a calibrated model, including miscellaneous uses, we can simulate our 
national single-family home samples and derive the end-use energy breakdown by region. 
Table 5.3 shows the fraction of electricity and gas used within each census division for 
each of the listed end uses. Note that these values average over the presence or absence of 
particular heating or cooling technologies. For example, homes in New England that heat 
with electricity use far more than 0.8% of their total electricity to do so, but they are a 
small fraction of all households in that region. 
 
Table 5.3. End-Use Electricity and Fuel Breakdown for Simulated Homes by Census 
Division 
 Electricity Fuel 
Division Avg. Use 

(kWh) 
Heat 
(%) 

Cool 
(%) 

Fan 
(%) 

Light 
(%) 

Other 
(%) 

Avg. Use 
(MMBTU) 

Heat 
(%) 

Other 
(%) 

1 9,006 0.8 17.7 3.3 21.0 57.2 117.0 70.9 29.1 
2 10,776 6.3 24.6 4.9 18.0 46.3 102.3 67.3 32.7 
3 11,364 7.0 25.9 6.7 16.4 44.0 100.1 67.3 32.7 
4 12,636 9.2 31.0 6.6 14.7 38.5 80.3 57.0 43.0 
5 15,689 10.7 28.6 5.2 12.6 43.0 31.8 47.6 52.4 
6 15,330 13.4 28.9 5.6 11.7 40.4 38.9 50.9 49.1 
7 14,508 8.0 37.7 6.0 11.6 36.7 43.5 31.6 68.4 
8 11,053 7.4 26.9 5.3 16.1 44.4 64.0 43.7 56.3 
9 10,104 8.8 18.0 3.6 17.6 52.1 55.2 36.9 63.1 

National 12,574 8.7 27.5 5.4 14.7 43.6 66.4 56.1 43.9 
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Figure 5.6. Cumulative distributions of electricity use for non-heat pump homes from simulations (blue diamonds) and from RECS 
(pink lines) in the a) coldest 1/3 of homes by climate (QKS = 0.978) b) middle 1/3 of homes by climate (QKS = 0.956) and c) warmest 
1/3 of homes by climate (QKS = 0.149). 
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Figure 5.7. Cumulative distributions of electricity use for non-heat pump homes from simulations (blue diamonds) and from RECS 
(pink lines) in the in the a) smallest 1/3 of homes (QKS = 0.721) b) middle-sized 1/3 of homes (QKS = 0.386) and c) largest 1/3 of 
homes (QKS = 0.187). 
 
a) b) c) 
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Figure 5.8. Cumulative distributions of fossil fuel use from simulations (blue diamonds) and from RECS (pink lines) in the a) coldest 
1/3 of homes by climate (QKS = 0.189) b) middle 1/3 of homes by climate (QKS = 0.498) and c) warmest 1/3 of homes by climate (QKS 
= 0.816). 
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Figure 5.9. Cumulative distributions of fossil fuel use from simulations (blue diamonds) and from RECS (pink lines) in the a) smallest 
1/3 of homes (QKS = 0.013) b) middle-sized 1/3 of homes (QKS = 0.946) and c) largest 1/3 of homes (QKS = 0.070). 
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6. Heat Replacement 
 

The “heat replacement effect” refers to the interaction between appliance 
efficiency and home heating and cooling. In cool temperatures, inefficient appliances, 
which emit waste heat into the living space, reduce the load on heating systems, while the 
load on air conditioning systems is increased during warm weather. This effect has 
potential impacts on energy savings estimates from appliance efficiency. For example, 
replacing incandescent lights with fluorescent ones reduces lighting energy significantly, 
while increasing winter heating energy demand and reducing summer cooling demand. 
We expect that in cool climates (where heating dominates), appliance efficiency 
measures result in less overall savings than an appliance-only analysis would indicate, 
while the opposite is true in warm (cooling-dominated) climates. Appliance efficiency 
should also lead to some amount of fuel switching, where electric waste heat is replaced 
by fossil fuel heat. For example, a more efficient furnace fan may result in higher natural 
gas use.  

The heat replacement effect impacts the energy savings projections from 
appliance efficiency programs, such as mandatory standards. As a result, it has been the 
subject of analysis by standards-setting agencies. The United Kingdom’s Market 
Transformation Programme (MTP) published a set of simulation-based estimates of the 
effect in 199920. The magnitude of the effect in these estimates is generally larger than 
our estimates presented below. The MTP published a revised analysis in 201021 in which 
they rejected a simulation-based approach as unrealistic for many reasons; the potential 
shortcomings of simulation results are discussed below. Instead, MTP developed an 
approach based on the coincident timing of waste heat generated from appliances with 
heating demand. MTP applied factors to account for the distances and heat barriers within 
homes; the derivation of these factors is not presented. A more complex home simulation 
model could be used, in future, to evaluate the validity of these factors. MTP’s new 
estimates (for cold climates such as the United Kingdom) are smaller than those 
presented here by an amount consistent with the factors they present for the distance and 
heat barrier effects.  MTP does not present a methodology for estimating the variability in 
the heat replacement effect by home size, climate, heating system efficiency, or any other 
factor. Their approach, along with the magnitude of their factors, is consistent with our 
conclusion that the factors we derived from our research, and present in this report, 
should be treated as the upper bound of potential heat replacement effects. The Canada 
Mortgage and Housing Corporation also examined the heat replacement effect for 
lighting through a simulation approach22, and derived values similar to those presented 
here (although their impact results are presented in the form of cost savings, rather than 
energy savings). 

It is difficult to calculate the heat replacement effect in a given home, because it 
depends on many factors. These include the level of home insulation and leakage 
(including the placement and characteristics of the windows), the efficiency of the 
home’s heating and cooling systems, and the degree of temperature homogeneity within 
the living space. For example, an efficient lighting replacement in a room with an always-
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closed door would have very little impact on the temperature at the location of the 
thermostat in a different part of the house. As a result, it would change the comfort level 
in the room, but not the heating or cooling energy expended for the house as a whole. 

Our simulations do not attempt to take the fine granularity of these home details 
into account, and we believe that, as a result, we overestimate the heat replacement effect. 
Our simple one-homogeneous-space-per-floor prototypical houses should show more and 
stronger interaction between appliances and the HVAC system than real homes show. 
 We evaluated the heat replacement effect in our simulations through two different 
scenarios. In each scenario, we replaced a single type appliance within each home with an 
appliance using a different amount of energy. For the first scenario, we replaced the 
lighting mix in each home (40% fluorescent in the base case) with 100% fluorescent 
lighting, while maintaining the same level of light output. This reduced the lighting 
energy demand by approximately 42%. In the second scenario, we replaced the baseline 
refrigerator with a slightly larger appliance that used about 5% more energy.  

In each case, we compared the change in total electricity and fuel demand to the 
change in appliance energy use. We expected the whole-house electricity use to change 
by more than the appliance-only use because of the change in air conditioning load, and 
the whole-house fuel use to change in the opposite direction due to changes in the heating 
load. The differences between the lighting and refrigeration scenarios are twofold. First, 
the mixtures of latent and sensible heat loads generated by the appliances are different. 
Second, the simulated refrigerator energy use is related to the ambient temperature of its 
operating environment, while lighting is not, so there is an additional correlation between 
refrigerator energy use and interior climate (and therefore between refrigerator energy 
use and the heating and cooling loads on the HVAC system).  

Table 6.1 shows the results of our heat replacement simulations, for both the full 
national sample and for subsamples divided by heating degree days (HDD65). The results 
are presented as multiplicative factors which would adjust home energy use by the 
product of the factor and the energy savings from appliance efficiency. For example, in 
the warmest climates (0 to 1000 HDD65), the electricity factor for lighting is 1.16, while 
the gas factor is -0.04. This means that, on average, if lighting energy is reduced by 100 
kWh per year, then total home electricity use would go down by 116 kWh, while fuel use 
would increase by the equivalent of 4 kWh of site energy. Recall that the simple nature of 
our home interior simulations leads us to conclude that the heat replacement effect that 
we calculated is greater than that which would be experienced in either real homes or by 
using a more complete simulation.  

Assessing the overall impact of the heat replacement effect on national energy use 
(or on a home’s total energy use) would require combining the impacts on electricity and 
fuel usage. The “primary energy factor” takes into account the national average site-to-
source conversion factor, which accounts for the efficiency of electricity generation and 
transmission, and can be used to combine electricity and fuel usages into a single 
measure. (Energy savings from national appliance efficiency programs, such as 
mandatory standards, are often expressed in primary energy units.) Applying primary 
energy factors to our results could help account for heat replacement, with the 
understanding that the factors presented here are likely to be further from unity than more 
realistic models would project. 
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It is important to note that individual homes may have heat replacement factors 
that differ greatly from these averages. One advantage of a simulation approach for 
estimating the heat replacement effect is the direct measurement of the variation of the 
heat replacement effect from home to home. For example, across the full sample the 
lighting factor for electricity varies from 0.25 to 2.0, while the lighting factor for fuel 
varies from -1.74 to 0. This wide variation results from different home heating and 
cooling equipment, including the lack thereof, different levels of home insulation, and the 
wide variation in climate within the United States. 
 
Table 6.1. Heat Replacement Factors for Lighting and Refrigerators 
 Lighting Factors Refrigerator Factors 
Subsample by 
HDD65 

Electricity Fuel Primary 
Energy 

Electricity Fuel Primary 
Energy 

0 to 1000 1.16 -0.04 1.153 1.23 -0.04 1.220 
1000 to 2000 1.09 -0.38 0.965 1.14 -0.37 1.020 
2000 to 3000 1.09 -0.38 0.970 1.13 -0.38 1.015 
3000 to 4000 1.06 -0.38 0.939 1.10 -0.36 0.987 
4000 to 5000 1.07 -0.40 0.944 1.12 -0.37 0.998 
5000 to 6000 1.08 -0.39 0.953 1.13 -0.38 1.008 
6000 to 7000 1.08 -0.40 0.951 1.13 -0.38 1.006 
7000 to 8000 1.08 -0.43 0.941 1.12 -0.41 0.996 
8000 and above 1.06 -0.41 0.927 1.08 -0.42 0.946 
National average 1.07 -0.40 0.946 1.12 -0.38 0.999 
 
 
7. Energy Impacts of Policies 
 
 The simulation tool described in this report could be used by policymakers to 
evaluate the potential energy savings resulting from policies that target the home building 
envelope or energy-using appliances within the home, such as HVAC or lighting systems. 
We examined several trial cases of such policy investigations to demonstrate this 
application. Each case takes the form of a single change in every simulated home. We 
examined the case of “overnight miracles” in which the changes were implemented on all 
homes in the country at once. The changes examined include: 

 replacement of all home lighting with fluorescent lights, 
 upgrade of central HVAC systems to efficient multi-speed systems, 
 increasing all home insulation to the maximum level seen in any of the prototype 

homes, 
 reducing leakage to 2/3 of the level seen in any of the prototypes, 
 combining the insulation increase and leakage reduction, 
 raising summer thermostats by 1 degree, and 
 lowering winter thermostats by 1 degree. 

For each imposed change, we evaluated the resulting national energy savings for 
electricity, fossil fuel, and a combination of these two weighted to represent primary 
energy, which accounts for losses in electricity generation and transmission. We also 
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evaluated the regional differences in the impact of these changes by comparing the 
energy savings, on a percentage basis, in each of the nine census divisions.  
 
7.1 Baseline Energy Use 
 
 The 3,418 simulated single-family homes, weighted by the factors provided by 
RECS, use a total of 1,089 TWh of electricity and 5.75 quadrillion Btus (quads) of fuel, 
mostly natural gas. We used the average “site-to-source” factor for the year 2005 from 
the 2008 Annual Energy Outlook23, 3.18, to convert the end-use of electricity (in Btus) 
into Btus of primary energy, and assumed a “site-to-source” factor of 1.0 for fuel. Using 
this conversion, energy consumption from single-family simulated homes totals 17.57 
quads, of which 11.82 quads is from electricity. The total energy use calculated by our 
simulation tool is within 2% of the energy use reported by RECS for the same set of 
households. 

Table 7.1 shows the regional and national electricity and fuel consumption, as 
well as the combined primary energy consumption. (Note that the site-to-source factor we 
used to calculate the primary energy here and throughout this section is a national 
average. In reality, different regions have different fuel mixes and therefore have 
different relationships between electricity use and primary energy.) 
 
Table 7.1. Total Energy Consumption by Single-Family Homes in U.S. Census 
Divisions 
Division Electricity 

(TWh) 
Fuel 

(quads)
Primary Energy 

(quads) 
New England 32 0.42 0.77 
Middle Atlantic 111 1.06 2.27 
East North Central 165 1.45 3.24 
West North Central 81 0.52 1.40 
South Atlantic 263 0.53 3.39 
East South Central 94 0.24 1.27 
West South Central 145 0.44 2.01 
Mountain 73 0.42 1.22 
Pacific 123 0.67 2.01 
National 1089 5.75 17.57 
 
 
7.2 Lighting 
 
 The baseline simulated homes have a mixture of incandescent and fluorescent 
lighting, with 40% of the light output coming from fluorescent lights. We modeled the 
same homes with 100% fluorescent lighting, which produces the same amount of light 
with less waste heat. As expected, electricity use decreased significantly, due to both the 
lighting itself and the reduction in air conditioning demand, while fuel use increased as a 
result of the heat replacement effect. On a national basis, electricity consumption fell 
6.8%, to 1,015 TWh, while fuel consumption rose 1.4% to 5.83 quads. The total primary 
energy demand from single-family homes fell from 17.57 to 16.85 quads, a decline of 
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4.1%. As Table 7.2 shows, the electricity savings, fuel use, and primary energy impact 
vary regionally.  
 
Table 7.2. Percentage Impact on Regional Energy Demand from a Replacement of 
All Single-Family Lighting by Fluorescent Lights (From a 40% Baseline) 
Division Electricity Fuel Primary Energy 
New England -9.4% 1.7% -3.3% 
Middle Atlantic -8.2% 1.6% -3.6% 
East North Central -7.6% 1.4% -3.6% 
West North Central -6.9% 1.4% -3.8% 
South Atlantic -5.9% 1.4% -4.7% 
East South Central -5.3% 1.4% -4.0% 
West South Central -5.6% 0.9% -4.2% 
Mountain -7.4% 1.3% -4.4% 
Pacific -7.7% 1.4% -4.7% 
National -6.8% 1.4% -4.1% 
 
7.3 HVAC Appliance Efficiency 
 
 In this policy case, we examined a fictitious case in which every single-family 
household replaced central air conditioners and heaters with highly efficient multi-speed 
systems, while making no other changes to their homes. In particular, we modeled an 
increase in central air conditioner and heat pump cooling efficiency to SEER 16, a heat 
pump heating efficiency increase to HSPF 10, and a gas and oil furnace efficiency 
increase to an AFUE of 92. (Electric resistance furnaces maintain 100% efficiency.) The 
furnace fan uses an ECM with a constant-torque control algorithm. HVAC equipment 
other than central systems, such as window air conditioners and baseboard heaters, was 
left unchanged. 
 The simulations leading to this result were completed as a separate run from the 
simulations for the other policy cases presented in this section. As a result, the baseline 
energy use is slightly different: 1,097 TWh of electricity and 5.71 quads of fuel, for a 
total primary energy use of 16.71 quads. In the high-efficiency HVAC case considered, 
electricity use fell 11.8% to 969 TWh, fuel use fell 9.1% to 5.19 quads, and primary 
energy fell 10.9% to 14.89 quads. 
 We also considered a policy case in which households replaced their existing 
central HVAC systems with systems that approximately meet the current minimum 
federal efficiency standards (SEER 13 and AFUE 80). If a household in the base case 
owned a system that exceeded this standard, it was downgraded to the minimal 
efficiency; this is the case for fewer than 20% of households. Under this scenario, 
electricity use was 4.5% below the baseline case (1,048 TWh), fuel use was 4.4% below 
the baseline case (5.46 quads), and primary energy use was 4.5% below the baseline 
(15.96 quads). 
 HVAC system efficiency has dramatically different impacts in different climate 
zones. Table 7.3 shows the percentage impact of these two HVAC-upgrade scenarios on 
electricity, fuel, and primary energy in the nine census divisions. 
 



40 
 

Table 7.3. Percentage Impact on Regional Single-Family Home Energy Demand 
from Increased HVAC System Efficiency 
 SEER 13 / AFUE 80 SEER 16 / AFUE 92 / ECM 
Division Elect. Fuel Primary 

Energy 
Elect. Fuel Primary 

Energy 
New England -1.4% -8.6% -5.3% -4.0% -11.4% -8.0% 
Middle Atlantic -3.2% -4.4% -3.8% -8.5% -8.0% -8.2% 
East North Central -4.4% -5.0% -4.6% -11.6% -11.8% -11.7% 
West North Central -5.3% -3.3% -4.6% -13.8% -9.5% -12.3% 
South Atlantic -4.7% -4.1% -4.6% -12.8% -8.3% -12.1% 
East South Central -4.9% -3.9% -4.7% -12.6% -9.2% -12.0% 
West South Central -6.3% -2.2% -5.5% -15.2% -5.5% -13.2% 
Mountain -4.1% -4.0% -4.1% -11.5% -8.5% -10.5% 
Pacific -3.6% -2.9% -3.3% -8.6% -6.6% -7.9% 
National -4.5% -4.4% -4.5% -11.8% -9.1% -10.9% 
 
7.4 Building Envelope Improvements 
 
 We examined three “overnight” improvements in building envelopes. The first 
was to increase the level of insulation to the maximum seen in any of the detached-home 
prototypes: wall insulation with an R-value of 19, ceilings with R-36 insulation, and 
floors with R-19. (Some mobile homes have floor insulation greater than R-19; these 
homes were left unchanged.) These improvements reduce electricity consumption to 
1,040 TWh (-4.5%) and fuel to 4.51 quads (a reduction of 21.5%). Table 6.4 shows the 
regional and national results in percentage terms. The Middle Atlantic division 
experiences the greatest percentage reduction in fuel use, while the East South Central 
sees the largest percentage impact on electricity consumption. 
 
Table 7.4. Percentage Impact on Regional Single-Family Home Energy Demand 
from Increased Insulation 
Division Electricity Fuel Primary Energy
New England -1.2% -19.9% -11.4% 
Middle Atlantic -3.3% -28.0% -14.8% 
East North Central -3.3% -22.3% -11.8% 
West North Central -3.8% -17.2% -8.7% 
South Atlantic -5.3% -21.3% -7.8% 
East South Central -6.9% -24.0% -10.2% 
West South Central -4.6% -13.9% -6.6% 
Mountain -4.9% -18.2% -9.6% 
Pacific -4.3% -20.4% -9.7% 
National -4.5% -21.5% -10.1% 
 
 The second building envelope improvement we examined was reduced air 
leakage. For this case, we changed the specific leakage area‡‡ of each house to 0.0002. 

                                                 
‡‡ Specific leakage area (or SLA) is an estimate of a home’s leakage area under typical conditions, in 
square inches, divided by the conditioned floor area of the home, in square feet. 
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(The baseline ranges between 0.0003 and 0.001, which depended on the RECS survey 
response regarding the presence of drafts in the home.) On a national level, reduced 
leakage reduces electricity demand by 2.5% to 1,061 TWh and fuel demand by 13.9% to 
4.95 quads. Table 7.5 shows the regional and national impacts in percentage terms. 
 
Table 7.5. Percentage Impact on Regional Single-Family Home Energy Demand 
from Reduced Air Leakage 
Division Electricity Fuel Primary Energy
New England 0.2% -20.7% -11.2% 
Middle Atlantic -1.6% -16.9% -8.8% 
East North Central -2.1% -17.0% -8.7% 
West North Central -3.0% -13.3% -6.8% 
South Atlantic -3.5% -11.2% -4.7% 
East South Central -4.2% -9.7% -5.2% 
West South Central -3.8% -7.5% -4.6% 
Mountain -1.5% -11.7% -5.1% 
Pacific -0.3% -8.3% -3.0% 
National -2.5% -13.9% -6.3% 
 
 Finally, we examined the combination of increased insulation and reduced air 
leakage. Combining the two building envelope improvements resulted in electricity 
consumption reduction of 6.5% to 1,018 TWh, while fuel consumption falls 34.5% to 
3.76 quads. Note that a building simulation tool can capture the interaction effects 
between efficiency measures, and the savings for the two individual actions do not add up 
to the savings for the combined actions. Table 7.6 shows the regional and national 
impacts in percentage terms. 
 
Table 7.6. Percentage Impact on Regional Single-Family Home Energy Demand 
from Both Increased Insulation and Reduced Air Leakage 
Division Electricity Fuel Primary Energy
New England -0.6% -39.6% -21.9% 
Middle Atlantic -4.4% -43.7% -22.7% 
East North Central -4.8% -38.8% -20.0% 
West North Central -6.3% -29.9% -15.0% 
South Atlantic -8.3% -31.4% -11.9% 
East South Central -10.6% -32.9% -14.8% 
West South Central -7.9% -20.6% -10.7% 
Mountain -6.1% -28.8% -14.0% 
Pacific -3.6% -26.8% -11.4% 
National -6.5% -34.5% -15.6% 
 
7.5 Changing Thermostat Settings 
 
 The final change we examined in our sample of simulated homes was to change 
the thermostat settings. In particular, we calculated the national energy savings under two 
scenarios: 1) every household lowers their thermostat setting by 1 degree Fahrenheit 
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during the heating season, and 2) every household raises their thermostat setting by 1 
degree Fahrenheit during the cooling season. The weighted average heating-season 
thermostat settings reported by single-family homes in RECS are 70.7 degrees during the 
day and 68.9 degrees at night. During the cooling season, the averages are 76.5 degrees 
during both day and night. (For the small number of RECS households that do not report 
their thermostat settings, we have assumed 80 degrees in the cooling season and 72 
degrees in the heating season.) We find that lowering the winter thermostat reduces 
electricity demand by 1% and fuel demand by 3.8%. Increasing the summer thermostat 
reduces electricity consumption by 2.1% and fuel consumption by 0.1%. (No homes are 
cooled by gas, so this fuel impact is probably a result of reduced water heating energy 
use.) Tables 7.7 and 7.8 show the regional and national impacts of this behavior change 
in percentage terms. 
 
Table 7.7. Percentage Impact on Regional Single-Family Home Energy Demand 
from Lowering Winter Thermostats by 1 Degree 
Division Electricity Fuel Primary Energy
New England -0.4% -4.3% -2.6% 
Middle Atlantic -0.6% -4.1% -2.3% 
East North Central -0.7% -3.7% -2.0% 
West North Central -0.9% -3.6% -1.9% 
South Atlantic -1.3% -3.7% -1.7% 
East South Central -1.4% -3.9% -1.9% 
West South Central -1.1% -3.1% -1.5% 
Mountain -0.9% -3.4% -1.7% 
Pacific -1.1% -4.0% -2.1% 
National -1.0% -3.8% -1.9% 
 
Table 7.8. Percentage Impact on Regional Single-Family Home Energy Demand 
from Raising Summer Thermostats by 1 Degree 
Division Electricity Fuel Primary Energy
New England -1.4% -0.1% -0.7% 
Middle Atlantic -1.8% -0.1% -1.0% 
East North Central -1.9% -0.1% -1.1% 
West North Central -2.1% -0.2% -1.4% 
South Atlantic -2.3% -0.2% -2.0% 
East South Central -2.1% -0.3% -1.8% 
West South Central -2.8% -0.3% -2.2% 
Mountain -1.8% -0.1% -1.2% 
Pacific -1.5% -0.1% -1.1% 
National -2.1% -0.1% -1.4% 
 
 
8. Conclusions and Future Work 
 
 This report has summarized our progress toward construction of a simulation tool 
capable of simulating a nationally representative sample of single-family homes. We 
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have demonstrated that the tool can produce a sample of annual home energy use data 
that is statistically indistinguishable from the equivalent portion of RECS, a large 
national sample of metered home energy use. The energy-use data generated by the 
simulation tool successfully reproduce the distributions of home energy use for almost all 
the examined subsets, including subsets defined by HVAC equipment type, geographic 
location, climate, home size, and home age.  

We also demonstrated the utility of this simulation tool, which is capable of 
generating a national energy use sample, for undertaking simulated experiments of 
potential interest to policymakers. First, we examined the heat replacement effect and 
evaluated the extent to which this effect might skew the results of appliance energy 
savings analyses. We conclude that this effect is not likely to skew national energy 
savings estimates by more than 5%, although its impact does show significant regional 
disparity.  

Second, we examined a set of “overnight” transformations of home construction 
and equipment to measure the resulting potential energy savings. Primary energy savings 
from dramatic increases in home insulation, combined with much more air-tight 
construction, could reduce home fuel consumption by more than one third, electricity 
consumption by over 6%, and primary energy demand by more than 15%. Appliance 
efficiency also has dramatic potential to produce energy savings, as indicated by a 
savings of 4.1% of primary energy from the transition to fluorescent lighting, which will 
take place over the next few years as national efficiency standards come into force. The 
mass adoption of multi-speed, SEER 16 air conditioners, combined with 92 AFUE 
furnaces, could reduce single-family primary energy consumption by almost 11% below 
base-case 2005 levels. 

Behavior can also have a significant impact on home energy use, without new 
equipment or home retrofits. We measured the energy savings resulting from energy-
conserving thermostat settings and found primary energy savings of 1.9% for a degree 
lower winter thermostat setting and 1.4% savings from homes a degree warmer in the 
summer. 

As we proceed to develop this tool further, we plan to evaluate its performance on 
other metrics and to improve its ability to simulate homes and equipment that are not 
accurately captured now. For example, we plan to work with the EnergyPlus community 
to capture realistically the behavior of heat pump systems, especially the use of the 
supplemental electric resistance heating element. We can also add the ability to simulate 
heat pump systems with natural gas supplemental heating systems. 

There are four larger projects that, if undertaken, would significantly increase the 
value of this simulation tool and increase the range of policy questions that the tool can 
accurately address. The first project would be to compare the simulated energy use data 
with the monthly RECS bill data. We do not expect good agreement on a month-to-
month basis, because the RECS houses faced the actual weather for the year 2005 while 
our simulated homes faced typical meteorological years. However, a comparison on a 
quarterly basis would allow us to better evaluate, and distinguish between, a policy’s 
impact on a home’s performance during the heating and cooling seasons, rather than 
using the variation in the national climate as our only controllable temperature variability. 

The second project would be to better capture the variation in behavior between 
households. Currently, the tool uses only single schedules for thermostat settings, 
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lighting, equipment, and occupancy, with the same schedules year round. A more 
comprehensive variability analysis would have monthly variation in lighting and 
occupancy schedules, and a range of possible schedules for each household, and for each 
simulated load or control parameter. For example, many homes are occupied by families 
with school-aged children, retirees, or by people who work night shifts. The lighting, 
occupancy, and miscellaneous electric and gas usage schedules in these homes should be 
different. While we believe we have captured the average behavior well, along with the 
breadth of the distribution, we are not taking correlations into account. This analysis 
could also take the RECS survey data regarding the number of electric appliances in the 
home into account when assigning miscellaneous loads and capture the presence or 
absence of second refrigerators, freezers, and other white goods. The scale of the heat 
replacement effect depends on the coincidence of loads and heating or cooling demand, 
so variation and more accurate modeling of these schedules would have an impact on 
estimates of this effect. 

One of the major shortcomings of this research is the lack of variability in the 
insulation levels for different homes of the same vintage and general region of the 
country. This is related to the limited availability of data on the regional and temporal 
variability of insulation levels in general, particularly for homes constructed in the last 20 
years. Ritchard et al. and Huang et al. used the early RECS surveys to develop their 
prototypical insulation values, but more recent RECS surveys have not included enough 
detail to evaluate the R-values for each surveyed home. A representative national survey, 
such as RECS or the U.S. Census’s American Housing Survey, that included this 
information would be invaluable. It is possible that data on recent construction from the 
home construction industry could improve the characterization of recent construction and 
its regional variation. If RECS included this data, our simulation tool could model each 
house much more accurately, but any national survey that included the regional or 
climatic location of each sampled home could be easily applied to the RECS sample to 
develop a more complete model.  

A related project would be to extend the general framework of this simulation tool 
to capture multifamily housing units, such as apartment buildings. A survey of the sort 
described in the previous paragraph might collect the data necessary to build these 
models in a way that captures regional variation in construction materials, insulation, and 
HVAC systems. 

We hope to continue to develop and improve the tool as outlined here. Even 
before the anticipated improvements have been completed, the simulation tool presented 
in this report can address important policy questions and provide insight to policymakers 
regarding the relative impacts of different energy efficiency measures. 
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Appendix A: Insulation for Construction Locations 
 
Table A.1. Insulation for Single-Family Detached Houses 
City Era Not Retrofit Retrofit 

Wall Roof Floor Wall Roof Floor 
Albuquerque Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 19    
 After 1989 13 34 19    
Atlanta Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 26 0    
 After 1989 11 23 0    
Boston Before 1950 0 0 0 7 22 0 
 1950-1979 0 22 0 7 22 0 
 1980-1989 13 23 0    
 After 1989 13 31 0    
Chicago Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 19 0 
 1980-1989 13 22 0    
 After 1989 13 29 0    
Denver Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 0    
 After 1989 13 34 0    
Fort Worth Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 19 0 
 1980-1989 11 22 0    
 After 1989 11 26 0    
Kansas City Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 22 0 
 1980-1989 19 24 0    
 After 1989 19 30 0    
Los Angeles Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 21 0    
 After 1989 11 24 0    
Miami Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 24 0    
 After 1989 11 22 0    
Minneapolis Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 22 0 
 1980-1989 19 24 0    
 After 1989 19 30 0    
New Orleans Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 22 0    
 After 1989 11 26 0    
New York Before 1950 0 0 0 7 7 0 
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 1950-1979 0 7 0 7 11 0 
 1980-1989 13 23 19    
 After 1989 13 30 19    
Phoenix Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 0    
 After 1989 13 34 0    
San Francisco Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 21 0    
 After 1989 11 24 0    
Seattle Before 1950 0 0 0 7 7 0 
 1950-1979 0 11 0 7 19 0 
 1980-1989 11 21 19    
 After 1989 11 24 19    
Washington, DC Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 24 19    
 After 1989 11 22 19    
 
Table A.2. Insulation for Single-Family Attached Houses 
  Not Retrofit Retrofit 
City Construction 

Era 
Wall Roof Floor Wall Roof Floor 

Albuquerque Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 19    
 After 1989 13 34 19    
Atlanta Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 14 0    
 After 1989 11 23 19    
Boston Before 1950 0 0 0 7 22 0 
 1950-1979 0 22 0 7 22 0 
 1980-1989 13 26 0    
 After 1989 13 36 0    
Chicago Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 19 0 
 1980-1989 13 22 0    
 After 1989 13 30 0    
Denver Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 0    
 After 1989 13 34 0    
Fort Worth Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 19 0 
 1980-1989 11 24 0    
 After 1989 11 22 0    
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Kansas City Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 22 0 
 1980-1989 19 24 0    
 After 1989 19 36 0    
Los Angeles Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 21 0    
 After 1989 11 23 0    
Miami Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 11 14 0    
 After 1989 11 16 0    
Minneapolis Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 22 0 
 1980-1989 19 24 0    
 After 1989 19 36 0    
New 
Orleans 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 0 7 11 0 
 1980-1989 11 24 0    
 After 1989 11 22 0    
New York Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 0 7 11 0 
 1980-1989 13 27 19    
 After 1989 13 32 19    
Phoenix Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 0 7 11 0 
 1980-1989 13 26 0    
 After 1989 13 34 0    
San 
Francisco 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 0 7 11 0 
 1980-1989 11 21 0    
 After 1989 11 23 0    
Seattle Before 1950 0 0 0 7 7 0 
 1950-1979 0 11 0 7 19 0 
 1980-1989 11 21 19    
 After 1989 19 23 19    
Washington 
DC 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 0 7 11 0 
 1980-1989 11 14 19    
 After 1989 11 16 19    
 
Table A.3. Insulation for Single-Family Manufactured Houses 
  Not Retrofit Retrofit 
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City Construction 
Era 

Wall Roof Floor Wall Roof Floor 

Albuquerque Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 7 7 11 7 
 1980-1989 13 26 17    
 After 1989 13 34 23    
Atlanta Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 11 5 
 1980-1989 11 26 17    
 After 1989 11 23 15    
Boston Before 1950 0 0 0 7 22 0 
 1950-1979 0 22 15 7 22 15 
 1980-1989 13 23 15    
 After 1989 13 31 21    
Chicago Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 7 7 19 7 
 1980-1989 13 22 15    
 After 1989 13 29 19    
Denver Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 7 7 11 7 
 1980-1989 13 26 17    
 After 1989 13 34 23    
Fort Worth Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 19 5 
 1980-1989 11 22 15    
 After 1989 11 26 17    
Kansas City Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 22 5 
 1980-1989 19 24 16    
 After 1989 19 30 20    
Los Angeles Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 11 5 
 1980-1989 11 21 14    
 After 1989 11 24 16    
Miami Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 11 5 
 1980-1989 11 24 16    
 After 1989 11 22 15    
Minneapolis Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 22 5 
 1980-1989 19 24 16    
 After 1989 19 30 20    
New 
Orleans 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 5 7 11 5 
 1980-1989 11 22 15    
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 After 1989 11 26 17    
New York Before 1950 0 0 0 7 7 0 
 1950-1979 0 7 5 7 11 5 
 1980-1989 13 23 16    
 After 1989 13 30 20    
Phoenix Before 1950 0 0 0 7 11 0 
 1950-1979 0 11 7 7 11 7 
 1980-1989 13 26 17    
 After 1989 13 34 23    
San 
Francisco 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 5 7 11 5 
 1980-1989 11 21 14    
 After 1989 11 24 16    
Seattle Before 1950 0 0 0 7 7 0 
 1950-1979 0 11 7 7 19 7 
 1980-1989 11 21 14    
 After 1989 11 24 16    
Washington 
DC 

Before 1950 0 0 0 7 7 0 

 1950-1979 0 7 5 7 11 5 
 1980-1989 11 24 16    
 After 1989 11 22 15    
 
 
Appendix B. Details of Running EnergyPlus Simulations on Amazon EC2 
 

This appendix describes the detailed process we developed to run EnergyPlus 
simulations on Amazon EC2, which is a service whereby Amazon can rent its unused 
computer resources to other users. The process begins by preparing the EnergyPlus input 
files specific to each house on our local PC. These files mostly consist of EnergyPlus 
macro variable definitions such as the house size, number of floors, insulation level, wall 
and foundation construction, and HVAC system parameters. The bulk of the EnergyPlus 
input files reside on the Amazon EBS volume, as they do not change between simulation 
runs.  

Two other files are prepared along with the EnergyPlus files: HomeWeather.txt 
and Runparams.txt. HomeWeather.txt consists of one line for each home to be simulated. 
Each line contains the file name of the home-specific input file and the name of the 
weather file that corresponds with that home. Scripts on the EC2 machines use this file to 
prepare process-specific lists of inputs for the EnergyPlus executable. RunParams.txt 
consists of four lines, each with a single number. The first line contains the number of 
cores of the Amazon EC2 instances we will be using. This is usually 8 for the High-CPU 
Extra Large instances, but can also be 2, for the Large instance used for testing. The 
second line contains the number of Amazon EC2 instances needed for this run. The third 
lists the number of homes to be simulated (generally less than or equal to 3,418), and the 
fourth lists the number of variants of each home that will be run. For a simple marginal-
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impact run, this value would be 2, as we are comparing a base case of each home to a 
case with a single change. For the full investigation of HVAC impacts (detailed later), 
this value was 8.  

When the local Excel spreadsheet tool is done preparing the EnergyPlus macro 
input files, as well as the two supplementary files just described, these files are combined 
and compressed into a ZIP file. At this point, the local machine has done its part, and the 
focus turns to Amazon EC2. (As explained in section 3, there are two ways to launch an 
EC2 instance: on-demand or through the Amazon spot market. On-demand instances 
launch within a minute or so after they are requested and stay running until we request 
that they stop. Spot requests are bids in the spot market that Amazon runs to auction 
computing resources.)  

The local machine runs a Ruby script, “ec2-master.rb”, which coordinates the 
start and stop of the Amazon EC2 simulation process. This script requests a single 
instance of the required type of Amazon EC2 virtual machine, uploads the ZIP file, and 
then starts a Perl script, “master.pl”, on that single machine (referred to as the “master” 
instance). This machine is requested using the on-demand mechanism, regardless of 
whether the rest of the instances will be requested on-demand or using the spot request 
process, in order to avoid the delay common with spot requests, which require more user 
interaction. (The user must approve the connection to the master instance the first time it 
is made after the instance launches.) The ec2-master.rb script waits for the completion of 
master.pl on the master instance; at this point the results of the EnergyPlus simulations 
are ready for download in the form of a single ZIP file for each instance, each of which 
has been copied to the EBS volume, hosted on the master instance. The ec2-master.rb 
initiates the download of each of the ZIP files, then terminates. 

The process that is coordinated by the scripts on the master instance starts with 
the master.pl. This script begins its work by unzipping the uploaded EnergyPlus input 
and parameter files. It prepares various directories and cleans up the results of previous 
runs. It then reads in the values in RunParams.txt in order to evaluate the number of 
“slave” instances to launch and the number of homes to assign to each processor core on 
each instance. It runs the script “distribute_imfs.pl” on the master instance; this script, 
which is described in more detail below, distributes the IMF files (EnergyPlus macro 
input files) for each processor core. It then launches the slave instances (if more than one 
instance was requested) using the launch_instances.rb script. This script coordinates the 
launch, using either spot or on-demand requests, of the required number of slave 
instances and records their Amazon instance identifiers in a file where master.pl can read 
them. 

Once all the slave instances are running, master.pl begins a process to initialize 
and run the simulations on each slave. It first detaches the EBS volume from the master 
instance then attaches it to the first slave instance. It runs several commands to prepare 
directories on the slave and runs the “distribute_imfs.pl” script. This script takes as its 
inputs the parameters in RunParams.txt (describing the total number of simulation runs to 
be completed) as well as the identification of the machine as number i of n instances. 
This information allows it to calculate which homes its instance is responsible for 
simulating and to divide those homes among the 8 (or 2) processor cores on its machine. 
Each machine is preconfigured to have eight directories in the home directory of the only 
user (named “ubuntu”), called “1”, “2”, etc. Directory 1 contains all the files addressed 
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by the EnergyPlus executable on the first processor core, so distribute_imfs.pl places the 
input files assigned to that core in directory 1. It also creates HomePairs.txt and 
HomePairs1.txt. These files are subsets of the uploaded HomeWeatherPairs.txt files. 
HomePairs.txt includes all of the homes (including each of the variants) and their 
corresponding weather files. HomePairs1.txt includes only the first version of each home, 
as it is used for HVAC system sizing purposes only. Each of the marginally different 
houses examined in additional runs of each house uses the same HVAC system sizing 
information. Once the input and run-parameter files have been distributed, the master.pl 
script detaches the EBS volume and begins the “starteplus.pl” script on the slave 
machine. (More details on this script are provided below). This script is run using 
“nohup” so that the EnergyPlus simulations are non-blocking and master.pl can proceed 
to disconnect from this slave entirely, move to the next, and repeat this process. Once all 
the slaves are running their requisite EnergyPlus simulations, master.pl returns its 
attention to the master instance. It mounts the EBS volume and runs starteplus.pl for the 
master machine, without “nohup”. This ensures that master.pl continues to run until all of 
the EnergyPlus simulations are complete. When they are done, master.pl completes and 
passes control back to the ec2-master.rb script on our local PC, which can download the 
outputs. 

The starteplus.pl script consists of 5 sections. The first four sections each have a 
similar form, and their purpose is to run the same commands on each of the processor 
cores on a given instance. Each of these sections begins by launching n copies of a given 
script, one for each of the n cores. These scripts are launched using the Perl “fork” 
formulation, meaning that they are spawned as separate processes that don’t force the 
next process launch to wait until the first is complete. In this way we are able to fully 
utilize the processing power of the instance. Once the n copies of each script are running, 
starteplus.pl enters a “while” loop, waiting until all of the processes are complete before 
proceeding to the next section of the script. This way we can ensure that each section is 
complete before proceeding to the next.  

The first section of starteplus.pl runs EnergyPlus using only the homes and 
weather files described in HomePairs1.txt, with the run_weather EnergyPlus variable set 
to No. This tells EnergyPlus to run the autosizing simulation, but not to simulate each 
house for the full year described in the weather file. The next section runs the 
“process_eio.rb” script. This script examines the .eio files produced by each of the sizing 
runs. The goal of this script is to implement changes in the HVAC system descriptions in 
order to make them more realistic. (These changes are described in more detail in section 
2 of this report.) Once these new HVAC system parameters are determined, they are 
fixed in new EnergyPlus input files, which take the place of the file used in the autosizing 
run in which every relevant input was autosized.  

The third section of starteplus.pl does the full annual simulation of every variant 
of every home, using the annual weather file assigned by HomePairs.txt (with the 
run_weather EnergyPlus macro variable now set to Yes). This section usually takes the 
bulk of the time used by the entire simulation process. When this section is complete, a 
short script called “clean_csv.rb” processes the comma separated value (CSV) outputs 
from the runs into a more usable and uniform format. These outputs include the hourly 
energy use and home temperature data. For example, the script combines the heating 
energy used for the first and second floors of a two-story house into a single column with 
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8,760 entries, one for each hour of the year, including combining natural gas used for 
boilers and furnaces or electricity used for heat pumps, furnaces, or electric baseboard 
heating. 

The final section of starteplus.pl cleans up unneeded output files, copies the files 
we do want, such as the newly cleaned CSV files, to a standard directory, and then 
compresses these outputs into a single ZIP file for each instance, labeled by instance 
(ep_outputs4.zip for the fourth slave, for example). On slave instances, the script uses 
SCP to copy the ZIP file to the EBS volume attached to the master instance. Once that 
copy is complete, the slave instance issues the correct command to Amazon to terminate 
itself. On the master instance, the script simply creates the ZIP file in the correct location. 
It then waits until all of the slave machines are done; Amazon EC2 allows simple queries 
to determine whether all of the slave machines have issued their termination commands, 
implying that they are done and have successfully copied over their output ZIP files.  The 
script creates symbolic links between the ZIP files on the EBS volume and files in the 
web server’s home directory on the master instance. The files may now be downloaded 
over the Internet, served by the Apache web server running on the master instance. These 
are the files that the ec2-master.rb file, running on our local PC, downloads at the 
completion of the simulation runs. 
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